Searched for: author%3A%22Mol%2C+J.M.C.%22
(1 - 3 of 3)
document
Dong, J. (author), Tümer, N. (author), Leeflang, M.A. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zadpoor, A.A. (author), Zhou, J. (author)
Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes. The recent progress in additive manufacturing (AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures. Extrusion-based AM, followed by debinding and sintering, has been recently...
journal article 2022
document
Dong, J. (author), Tümer, N. (author), Putra, N.E. (author), Zhu, Jia-Ning (author), Li, Y. (author), Leeflang, M.A. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zadpoor, A.A. (author), Zhou, J. (author)
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts to apply AM techniques, mainly powder bed fusion AM, for the...
journal article 2021
document
Li, Y. (author), Zhou, J. (author), Pavanram, P. (author), Leeflang, M.A. (author), Fockaert, L.I. (author), Pouran, B. (author), Tümer, N. (author), Schröder, K. U. (author), Mol, J.M.C. (author), Weinans, Harrie (author), Jahr, H. (author), Zadpoor, A.A. (author)
An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly...
journal article 2017