Searched for: author%3A%22Smith%2C+W.A.%22
(1 - 3 of 3)
document
Vermaas, D.A. (author), Sassenburg, M. (author), Smith, W.A. (author)
Different pH requirements for a cathode and an anode result in a non-optimal performance for practical solar fuel systems. We present for the first time a photo-assisted water splitting device using a bipolar membrane, which allows a cathode to operate in an acidic electrolyte while the photoanode is in alkaline conditions. The bipolar membrane...
journal article 2015
document
Burdyny, T.E. (author), Sassenburg, M. (author), de Rooij, R. (author), Nessbit, Nathan (author), Kas, R. (author), Chandrashekar, S. (author), Firet, N.J. (author), Yang, K. (author), Liu, K. (author), Blommaert, M.A. (author), Kolen, M. (author), Ripepi, D. (author), Smith, W.A. (author)
Continued advancements in the electrochemical reduction of CO 2 (CO 2RR) have emphasized that reactivity,selectivity, and stability are not explicit material properties butcombined effects of the catalyst, double-layer, reaction environ-<br/>ment, and system configuration. These realizations have steadily built upon the foundational work...
journal article 2022
document
Sassenburg, M. (author), Kelly, Maria (author), Subramanian, S.S. (author), Smith, W.A. (author), Burdyny, T.E. (author)
Salt precipitation is a problem in electrochemical CO2 reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electrochemical reactions interacts homogeneously with CO2 to generate...
journal article 2022