Searched for: collection%253Air
(1 - 6 of 6)
document
Degli Esposti, D. (author), Stehouwer, L.E.A. (author), Gül, Önder (author), Samkharadze, Nodar (author), Déprez, C.C. (author), Meyer, M. (author), Meijer, Ilja N. (author), Tryputen, L. (author), Karwal, S. (author), Vandersypen, L.M.K. (author), Sammak, A. (author), Veldhorst, M. (author), Scappucci, G. (author)
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected...
journal article 2024
document
Meyer, M. (author), Déprez, C.C. (author), Meijer, Ilja N. (author), Unseld, F.K. (author), Karwal, S. (author), Sammak, A. (author), Scappucci, G. (author), Vandersypen, L.M.K. (author), Veldhorst, M. (author)
The small footprint of semiconductor qubits is favorable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in the gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability. Here, we...
journal article 2023
document
Meyer, M. (author), Déprez, C.C. (author), van Abswoude, Timo R. (author), Meijer, Ilja N. (author), Liu, Dingshan (author), Wang, C.A. (author), Karwal, S. (author), Oosterhout, S.D. (author), Borsoi, F. (author), Sammak, A. (author), Hendrickx, N.W. (author), Scappucci, G. (author), Veldhorst, M. (author)
Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to...
journal article 2023
document
Möhle, C.M. (author), Ke, C. (author), Wang, Q. (author), Xiao, Di (author), Karwal, S. (author), Lodari, M. (author), Van De Kerkhof, Vincent (author), Termaat, Ruben (author), Scappucci, G. (author), Goswami, S. (author)
Topological superconductivity can be engineered in semiconductors with strong spin-orbit interaction coupled to a superconductor. Experimental advances in this field have often been triggered by the development of new hybrid material systems. Among these, two-dimensional electron gases (2DEGs) are of particular interest due to their inherent...
journal article 2021
document
Kulesh, I. (author), Ke, C. (author), Thomas, Candice (author), Karwal, S. (author), Möhle, C.M. (author), Metti, Sara (author), Kallaher, Ray (author), Gardner, Geoffrey C. (author), Manfra, Michael J. (author), Goswami, S. (author)
Indium-antimonide (InSb) two-dimensional electron gases (2DEGs) have a unique combination of material properties: high electron mobility, a strong spin-orbit interaction, a large Landé g factor, and a small effective mass. This makes them an attractive platform to explore a variety of mesoscopic phenomena ranging from spintronics to...
journal article 2020
document
Vasudevan, S.A. (author), Xu, Y. (author), Karwal, S. (author), Van Ostaay, H.G.M.E. (author), Meesters, G.M.H. (author), Talebi, M. (author), Sudhölter, E.J.R. (author), Van Ommen, J.R. (author)
Molecular layer deposition (MLD) was used to coat micron-sized protein particles in a fluidized bed reactor. Our results show that the dissolution rate of particles coated via MLD rapidly decreases with the increase in number of coating cycles, while the uncoated particles dissolve instantaneously.
journal article 2015
Searched for: collection%253Air
(1 - 6 of 6)