Searched for: collection%253Air
(21 - 40 of 129)

Pages

document
Chang, Z. (author), Liang, M. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Cementitious materials may exhibit significant creep at very early age. This is potentially important for concrete 3D printing, where the material is progressively loaded even before it sets. However, does creep actually affect the buildability of 3D printed concrete? Herein, the influence of early-age creep on the buildability of 3D printed...
journal article 2023
document
Zhang, H. (author), Jin, Zuquan (author), Jiang, Nengdong (author), Ge, Zhi (author), Schlangen, E. (author), Ling, Yifeng (author), Šavija, B. (author), Wang, Zheng (author)
The classically lattice model assumes the local elements behave elastic brittle, neglecting the ductility of the mortar matrix. This leads to the simulated load⁃displacement response more brittle than the realistic. To solve the aforementioned issue, a piece⁃wise approach was introduced to describe the elastic⁃plastic constitutive relation of...
journal article 2023
document
Tawfek, Abdullah M. (author), Ge, Zhi (author), Li, Jian (author), Zhang, Kangkang (author), Jiang, Nengdong (author), Shao, Yingxuan (author), Ling, Yifeng (author), Šavija, B. (author)
An engineered cementitious composite (ECC) belongs to a type of high-performance fiber-reinforced materials. Fiber alignment causes the anisotropy of such materials. Herein, the influence of the fiber orientation on water and ion penetration into an ECC was studied. Fiber alignment was achieved using an extrusion approach. Water absorption,...
journal article 2023
document
Sun, Renjuan (author), Bu, Linglai (author), Zhang, Hongzhi (author), Guan, Yanhua (author), Ma, Chuanyi (author), Ge, Zhi (author), Šavija, B. (author)
White mud is a solid waste from the papermaking industry, composed mainly of CaCO<sub>3</sub> and residual alkali metal ions (such as Na+, Mg<sup>2+</sup>). In the current study, the feasibility of using white mud as partial replacement of slag in alkali activated materials is explored. The fluidity, setting time, autogenous shrinkage,...
journal article 2023
document
Liang, M. (author), Zhang, Y. (author), He, S. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This study investigated the evolution process of high-volume slag cement (HVSC) paste from a chemo-mechanical standpoint. HVSC specimens with a 70 w.t. % slag replacement rate were studied at various ages. Evolution of phase assemblage, microstructure development, and micromechanical properties were analyzed using TGA/XRD/MIP/SEM-EDS and nano...
journal article 2023
document
van Overmeir, A.L. (author), Šavija, B. (author), Bos, F. P. (author), Schlangen, E. (author)
With the introduction of 3D concrete printing, research started on how to include reinforcement in 3D printed structures. Initial studies on the implementation of strain hardening cementitious composites (SHCC) as self-reinforcing printable mortars have shown promising results. The development of this new type of SHCC comes with additional...
journal article 2023
document
Xu, Y. (author), Šavija, B. (author)
A composite can have properties much better than the components it is made of. This work proposes a three-dimensional auxetic cementitious-polymeric composite structure (3D-ACPC) which incorporates 3D printed polymeric shell with cementitious mortar. Uniaxial compression experiments are performed on the 3D-ACPC to study their quasi-static...
journal article 2023
document
Chang, Z. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Herein, different kinds of methods for buildability quantification of 3D concrete printing are reviewed, including experimental approaches, analytical modelling, and numerical simulations. A brief introduction on printing process is first given. This discusses the material properties in different stages. Material printability, which...
journal article 2023
document
Wan, Z. (author), Xu, Y. (author), He, S. (author), Chen, Y. (author), Xie, J. (author), Šavija, B. (author)
Direct ink writing of cementitious materials can be an alternative way for creating vascular self-healing concrete by intentionally incorporating hollow channels in the cementitious matrix. In this study, a 3D-printable fibre reinforced mortar was first developed. Three groups of specimens were fabricated using direct ink writing, where the...
journal article 2023
document
Xie, J. (author), Xu, Y. (author), Wan, Z. (author), Ghaderiaram, A. (author), Schlangen, E. (author), Šavija, B. (author)
The high deformation capacity of auxetic cementitious cellular composites (ACCCs) makes them promising for strain-based energy harvesting applications in infrastructure. In this study, a novel piezoelectric energy harvester (PEH) with ACCCs and surface-mounted PVDF film based on strain-induced piezoelectric mechanisms has been designed,...
journal article 2023
document
Wan, Z. (author), Zhang, Y. (author), Xu, Y. (author), Šavija, B. (author)
Additively manufactured vascular networks have great potential for use in autonomous self-healing of cementitious composites as they potentially allow multiple healing events to take place. However, the existence of a vascular tube wall may impede with the healing efficiency if it does not rupture timely to release the healing agent. The...
journal article 2023
document
Liang, M. (author), Chang, Z. (author), Zhang, Y. (author), Cheng, H. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were used to study the macro-scale autogenous deformation and stress...
journal article 2023
document
Chen, Y. (author), Liang, M. (author), Zhang, Y. (author), Li, Z. (author), Šavija, B. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Autogenous shrinkage may be a critical issue concerning the use of limestone-calcined clay-cement (LC3) in high-performance concrete and 3D printable cementitious materials, which have relatively low water to binder (W/B) ratio. Adding an internal curing agent, i.e., superabsorbent polymer (SAP), could be a viable solution in this context....
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law was used to predict creep compliance with hardening time and...
journal article 2023
document
Chen, Y. (author), Zhang, Y. (author), Šavija, B. (author), Copuroglu, Oguzhan (author)
Formulation of quaternary blended system containing ordinary Portland cement or clinker, slag, limestone and calcined clay (LC2) appeared to be a viable approach to developing low-clinker cements without severely sacrificing mechanical performance at later ages. This paper investigates the effect of two material parameters, i.e., LC2-to-slag...
journal article 2023
document
van Overmeir, A.L. (author), Šavija, B. (author), Bos, Freek P. (author), Schlangen, E. (author)
Several studies have shown the potential of strain-hardening cementitious composites (SHCC) as a self-reinforcing printable mortar. However, papers published on the development of three-dimensional printable SHCC (3DP-SHCC) often report a discrepancy between the mechanical properties of the cast and printed specimens. This paper evaluates the...
journal article 2023
document
Wang, Chuan (author), Sun, Renjuan (author), Hu, Xinlei (author), Guan, Yanhua (author), Yang, Yingzi (author), Lu, Wei (author), Tian, Jun (author), Zhang, Hongzhi (author), Ge, Zhi (author), Šavija, B. (author)
This paper presents a research on the chloride penetration behavior of engineered cementitious composites (ECC) under sustained flexural loads. Three load levels, i.e. 30 %, 60 % and 75 % of the ultimate flexural load were used. Chloride diffusion depth and concentration profile were measured 30, 60 and 150 days after the specimen was exposed...
journal article 2023
document
Awasthy, Nikhil (author), Schlangen, E. (author), Hordijk, Dick (author), Šavija, B. (author), Lukovic, M. (author)
Concrete is characterized in terms of its engineering properties, mainly strength and stiffness, which are subsequently used in structural design. However, the apparent (i.e., measured) concrete properties are not intrinsic but dependent on the conditions under which the measurement is performed. Herein a combined experimental and numerical...
journal article 2023
document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Chen, Y. (author), Chang, Z. (author), He, S. (author), Copuroglu, Oguzhan (author), Šavija, B. (author), Schlangen, E. (author)
A good bond between the layers of 3D printed cementitious materials is a prerequisite for having high structural rigidity for the printed elements. However, the influence of printing process on an interlayer bond is still not well understood. This study investigates the influence of curing methods (i.e., air curing, plastic film covering, wet...
journal article 2022
Searched for: collection%253Air
(21 - 40 of 129)

Pages