Searched for: collection%253Air
(61 - 80 of 276)

Pages

document
Liang, M. (author), Chang, Z. (author), Wan, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep behavior of concrete. Three ensemble machine learning (EML) models are selected in this study: Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gradient Boosting Machine (LGBM). Firstly, the creep data in...
journal article 2022
document
Chen, Y. (author), He, S. (author), Gan, Y. (author), Copuroglu, Oguzhan (author), Veer, F.A. (author), Schlangen, E. (author)
This paper aims to provide a systematical review of the available printing strategies, sustainable cementitious materials and characterization methods for extrusion-based 3D concrete printing (3DCP). The printing strategies, consisting of printing setup, process, and material requirements, were summarized initially. In the material aspect,...
journal article 2022
document
Mustafa, S. (author), Singh, S. (author), Hordijk, D. (author), Schlangen, E. (author), Lukovic, M. (author)
Hybrid application of conventional concrete and Strain Hardening Cementitious Composite (SHCC) is recently shown to be promising for crack width control. In this paper, a combined experimental and numerical study is performed to validate the concept and to study the effect of interface treatment on crack width control. The interface is varied...
journal article 2022
document
Liang, M. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built to learn...
journal article 2022
document
Zhang, Y. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
The effect of slag of different origins (synthetic slag produced in the laboratory and commercial slag collected from different steel factories) with comparable chemical composition, amorphous content and particle size distribution, on the hydration characteristics of slag cement was investigated. In order to study the effect of sulfur in...
journal article 2022
document
Chang, Z. (author), Wan, Z. (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Extrusion-based 3D concrete printing (3DCP) results in deposited materials with complex microstructures that have high porosity and distinct anisotropy. Due to the material heterogeneity and rapid growth of cracks, fracture analysis in these air-void structures is often complex, resulting in a high computational cost. This study proposes a...
journal article 2022
document
Chang, Z. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
This paper explores buildability quantification of randomly meshed 3D printed concrete objects by considering structural failure by elastic buckling. The newly proposed model considers the most relevant printing parameters, including time-dependent material behaviors, printing velocity, localized damage and influence of sequential printing...
journal article 2022
document
Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impact on the mechanical responses. Therefore, this work proposes a...
journal article 2022
document
Kamat, Ameya (author), Lubelli, B. (author), Schlangen, E. (author)
Porous building materials are often subjected to damage due to salt crystallization. In recent years, the addition of crystallization inhibitors in lime-based mortar, has shown promising results in improving durability of this material against salt decay. Lime-based mortars have low mechanical properties and slow setting. They are often replaced...
journal article 2022
document
Liang, M. (author), Li, Z. (author), He, S. (author), Chang, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is a significant direct index in early-age cracking (EAC) analysis of concrete. This study presents experiments and numerical modelling of the early-age stress evolution of Ground granulated blast furnace slag (GGBFS) concrete, considering the development of autogenous deformation and creep. Temperature...
journal article 2022
document
Tabatabaeian, A. (author), Liu, Sixin (author), Harrison, Philip (author), Schlangen, E. (author), Fotouhi, M. (author)
Recently emerging mechanochromic systems are becoming highly attractive for structural health monitoring (SHM) purposes in various industries, such as civil, wind, and aerospace, to improve the safety and performance of structures. These are based on self-reporting polymer composites which provide a light-weight sensor with an easy-to-read...
review 2022
document
Gao, Peng (author), Ye, G. (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
A structure-based modelling framework was established to simulate the three-dimensional autogenous shrinkage of cement paste. A cement hydration model, HYMOSTRUC3D-E, was used to obtain the microstructures and ionic concentrations of the cement paste. A lattice fracture model based on the effective stress and effective modulus was used to...
journal article 2022
document
van Overmeir, A.L. (author), Chaves Figueiredo, S. (author), Šavija, B. (author), Bos, Freek P. (author), Schlangen, E. (author)
Since the advent of three-dimensional concrete printing (3DCP), several studies have shown the potential of strain hardening cementitious composites (SHCC) as a self-reinforcing printable mortar. However, only a few papers focus on achieving sufficient buildability when developing printable SHCC. This study investigates the role of the...
journal article 2022
document
Sherzer, G. Lifshitz (author), Ye, G. (author), Schlangen, E. (author), Kovler, K. (author)
It has been observed that a trench wall embedded in the soil of the Dead Sea has lost strength and is deteriorating due to brine attack. This phenomenon demonstrates that concrete wall structural stability and durability can be seriously endangered. Yet conventional analysis using macroscopic models is considered an oversimplification, as it...
journal article 2022
document
Chen, Y. (author), Copuroglu, Oguzhan (author), Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Schlangen, E. (author)
For many 3D printed cementitious materials, air voids may play a dominant role in the interlayer bond strength. However, to date, far too little attention has been paid to reveal the air void characteristics in 3D printed cementitious materials. Therefore, to fill this gap, this study attempts to provide an example of systematically...
journal article 2021
document
Nedeljković, Marija (author), Schlangen, E. (author), Fennis, Sonja (author)
Momenteel wordt gerecycled beton meestal toegepast als wegfundering en daarmee 'gedowncycled'. Dat komt onder meer doordat er geen informatie beschikbaar is over de kwaliteit van het gesloopte beton. Hoogwaardig hergebruik van gerecyclede toeslagmaterialen in nieuwe betonconstructies vereist een strengere kwaliteitscontrole. Aan de TU Delft...
journal article 2021
document
Kamat, Ameya (author), Lubelli, B. (author), Schlangen, E. (author)
Sodium chloride (NaCl) is one of the ubiquitous soluble salts in the environment and is responsible for weathering of building materials. The salt weathering is attributed to the stress developed from crystallisation of these salts in pores of the building materials, with supersaturation as the driving force. In the last years, researchers have...
conference paper 2021
document
Nedeljković, Marija (author), Visser, Jeanette (author), Nijland, Timo G. (author), Valcke, Siska (author), Schlangen, E. (author)
In the Netherlands, beside cement replacement with more green cement types, there is also an urgent need for alternative materials for natural sand in new concrete in order to make it circular. Furthermore, the recyclers have raised questions regarding upscaling and the potential of fine recycled concrete aggregates (fRCA) in structural concrete...
conference paper 2021
document
Romero Rodriguez, C. (author), Ye, R. (author), Varveri, Aikaterini (author), Rossi, E. (author), Anglani, Giovanni (author), Antonaci, Paola (author), Schlangen, E. (author), Šavija, B. (author)
Coupling of carbonation and chlorides ingress mechanisms is very common in concrete under certain exposure conditions such as coastal environments. The aggravation/ mitigation of corrosion by the existence of carbonation lies on the fact that microstructural changes due to carbonation result in changes on the transport properties of the material...
conference paper 2021
document
Zhang, H. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
Searched for: collection%253Air
(61 - 80 of 276)

Pages