Searched for: collection%253Air
(1 - 6 of 6)
document
Hsiao, T. (author), Cova Fariña, P. (author), Oosterhout, S.D. (author), Jirovec, D. (author), Zhang, X. (author), van Diepen, C.J. (author), Lawrie, W.I.L. (author), Wang, C.A. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author)
Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubbard physics, one of the richest playgrounds in condensed matter...
journal article 2024
document
Knörzer, J. (author), van Diepen, C.J. (author), Hsiao, T. (author), Giedke, G. (author), Mukhopadhyay, U. (author), Reichl, C. (author), Wegscheider, W. (author), Cirac, J. I. (author), Vandersypen, L.M.K. (author)
Long-range interactions play a key role in several phenomena of quantum physics and chemistry. To study these phenomena, analog quantum simulators provide an appealing alternative to classical numerical methods. Gate-defined quantum dots have been established as a platform for quantum simulation, but for those experiments the effect of long...
journal article 2022
document
Lodari, M. (author), Hendrickx, N.W. (author), Lawrie, W.I.L. (author), Hsiao, T. (author), Vandersypen, L.M.K. (author), Sammak, A. (author), Veldhorst, M. (author), Scappucci, G. (author)
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55 nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a percolation density for two-dimensional hole transport of 2.1 × 10 10 cm−2 , indicative of a very...
journal article 2021
document
van Diepen, C.J. (author), Hsiao, T. (author), Mukhopadhyay, U. (author), Reichl, Christian (author), Wegscheider, Werner (author), Vandersypen, L.M.K. (author)
The spin of a single electron in a semiconductor quantum dot provides a well-controlled and long-lived qubit implementation. The electron charge in turn allows control of the position of individual electrons in a quantum dot array, and enables charge sensors to probe the charge configuration. Here we show that the Coulomb repulsion allows an...
journal article 2021
document
van Diepen, C.J.J. (author), Hsiao, T. (author), Mukhopadhyay, U. (author), Reichl, C. (author), Wegscheider, W. (author), Vandersypen, L.M.K. (author)
Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime, the occurrence of phenomena such as resonating valence bonds, frustrated...
journal article 2021
document
Hsiao, T. (author), van Diepen, C.J. (author), Mukhopadhyay, U. (author), Reichl, C. (author), Wegscheider, W. (author), Vandersypen, L.M.K. (author)
Electrostatically-defined semiconductor quantum dot arrays offer a promising platform for quantum computation and quantum simulation. However, crosstalk of gate voltages to dot potentials and interdot tunnel couplings complicates the tuning of the device parameters. To date, crosstalk to the dot potentials is routinely and efficiently...
journal article 2020
Searched for: collection%253Air
(1 - 6 of 6)