Searched for: collection%253Air
(1 - 3 of 3)
document
Wobbes, E. D. (author), Möller, M. (author), Galavi, V. (author), Vuik, Cornelis (author)
The material point method (MPM) is an effective computational tool for simulating problems involving large deformations. However, its direct mapping of the material-point data to the background grid frequently leads to severe inaccuracies. The standard function reconstruction techniques can considerably decrease these errors, but do not...
conference paper 2020
document
Wobbes, Elizaveta (author), Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Both the material-point method (MPM) and optimal transportation meshfree (OTM) method have been developed to efficiently solve partial differential equations that are based on the conservation laws from continuum mechanics. However, the methods are derived in a different fashion and have been studied independently of one another. In this...
journal article 2020
document
Wobbes, Elizaveta (author), Möller, M. (author), Galavi, Vahid (author), Vuik, Cornelis (author)
Within the standard material point method (MPM), the spatial errors are partially caused by the direct mapping of material-point data to the background grid. In order to reduce these errors, we introduced a novel technique that combines the least squares method with the Taylor basis functions, called the Taylor least squares (TLS), to...
journal article 2019