Searched for: collection%253Air
(1 - 3 of 3)
document
Grazian, F. (author), Soeiro, Thiago B. (author), van Duijsen, P.J. (author), Bauer, P. (author)
In wireless charging systems, the H-bridge converter's switching frequency is set close to the system's natural resonance for achieving optimized zero voltage switching (ZVS). Variations to the system's natural resonance are commonly tracked by following the changes in the resonant current's polarity, i.e., current zero-crossings. The main...
journal article 2021
document
Grazian, F. (author), Shi, W. (author), Soeiro, Thiago B. (author), Dong, J. (author), van Duijsen, P.J. (author), Bauer, P. (author)
Industrial wireless charging systems use standardized coils to guarantee interoperability between different manufacturers. In combination with these coils, the compensation network can still be designed and optimized. This paper explains the step-by-step design of the compensation network for a 7.7 kW wireless charging system (power class WPT2),...
conference paper 2020
document
Grazian, F. (author), van Duijsen, P.J. (author), Roodenburg, B. (author), Soeiro, Thiago B. (author), Bauer, P. (author)
In inductive power transfer applications that use resonant compensation networks, the commonly employed H-bridge inverter should be kept operating in soft-switching to ensure high power efficiency and low irradiated electromagnetic noise. To achieve so, the zero-crossing detection circuit for the resonant current or voltage must be fast and...
conference paper 2020