Searched for: faculty%3A%22Applied%255C%252BSciences%22
(1 - 4 of 4)
document
Van Leeuwen, R. (author)
In this thesis the physics of nanoscale mechanical resonators and oscillators is studied. We discuss two types of resonators. First, a top-down fabricated doubly clamped beam resonator with an integrated piezoelectric actuator is introduced. The second type of resonators are based on layered two-dimensional materials, such as graphene and...
doctoral thesis 2015
document
Poot, M. (author)
This thesis describes experiments that were done with a wide range of nano(electro)mechanical systems (NEMS). These devices are promising candidates to study mechanics in the quantum regime. The experiments range from AFM measurements on few-layer graphene nanodrums, electrical detection of flexural modes of suspended carbon nanotubes both at...
doctoral thesis 2009
document
Sapmaz, S. (author)
Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small size a quantum dot has a discrete set of energy...
doctoral thesis 2006
document
Kovalev, A.A. (author)
Only charge degree of freedom is utilized in most electronic devices. The use of the spin degree of freedom is relatively recent. The discovery of the Giant Magnetoresistance (GMR) effect initiated the development of magnetoelectronics - the field that studies effects on electron transport involving the spin degree of freedom. GMR is a very...
doctoral thesis 2006
Searched for: faculty%3A%22Applied%255C%252BSciences%22
(1 - 4 of 4)