Searched for: subject%3A%22energy%255C%252Befficiency%22
(1 - 4 of 4)
document
Pan, S. (author), Makinwa, K.A.A. (author)
This article describes a highly energy-efficient Wheatstone bridge temperature sensor. To maximize sensitivity, the bridge is made from resistors with positive (silicided diffusion) and negative (poly) temperature coefficients. The bridge is balanced by a resistive (poly) FIR-DAC, which is part of a 2nd-order continuous-time delta-sigma...
journal article 2020
document
Pan, S. (author), Makinwa, K.A.A. (author)
This letter presents a compact, energy-efficient, and low-power Wheatstone-bridge temperature sensor for biomedical applications. To maximize sensitivity and reduce power dissipation, the sensor employs a high-resistance (600 kΩ ) bridge that consists of resistors with positive (silicided-poly) and negative ( n -poly) temperature coefficients...
journal article 2020
document
Pan, S. (author), Luo, Yanquan (author), Heidary Shalmany, S. (author), Makinwa, K.A.A. (author)
This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency, the filter exhibits a temperature-dependent...
journal article 2018
document
Pan, S. (author), Makinwa, K.A.A. (author)
This paper describes a compact, energy efficient, resistor-based temperature sensor that can operate over a wide temperature range (-55 °C-125 °C). The sensor is based on a Wheatstone bridge (WhB) made from silicided poly-silicon and non-silicided poly-silicon resistors. To achieve both area and energy efficiencies, the current output of the WhB...
journal article 2018
Searched for: subject%3A%22energy%255C%252Befficiency%22
(1 - 4 of 4)