Searched for: subject%3A%22fluid%255C-structure%255C%252Binteraction%22
(41 - 51 of 51)

Pages

document
Loeven, A. (author), Witteveen, J.A.S. (author), Bijl, H. (author)
In this paper a Two Step approach with Chaos Collocation for efficient uncertainty quantification in computational fluid-structure interactions is followed. In Step I, a Sensitivity Analysis is used to efficiently narrow the problem down from multiple uncertain parameters to one parameter which has the largest influence on the solution. In Step...
conference paper 2006
document
Michler, C. (author), Van Brummelen, E.H. (author), In 't Groen, R. (author), De Borst, R. (author)
The numerical solution of fluid-structure interactions with the customary subiteration method incurs numerous deficiencies. We validate a recently proposed solution method based on the conjugation of subiteration with a Newton-Krylov method, and demonstrate its superiority and beneficial characteristics.
conference paper 2006
document
Wüchner, R. (author), Kupzok, A. (author), Bletzinger, K.U. (author)
Due to their special load carrying behavior, membrane structures are using the material most efficiently. As a consequence, the realized structures are extremely light but susceptible to flow induced effects. The missing bending stiffness results in a complex coupling of stress state and membrane shape. This necessitates special form finding...
conference paper 2006
document
De Borst, R. (author), Hulshoff, S.J. (author), Lenz, S. (author), Munts, E.A. (author), Van Brummelen, E.H. (author), Wall, W.A. (author)
The basic idea of multiscale methods, namely the decomposition of a problem into a coarse scale and a fine scale, has in an intuitive manner been used in engineering for many decades, if not for centuries. Also in computational science, large-scale problems have been solved, and local data, for instance displacements, forces or velocities, have...
conference paper 2006
document
Michler, C. (author), Van Brummelen, E.H. (author), In 't Groen, R. (author), De Borst, R. (author)
The numerical solution of fluid-structure interactions with the customary subiteration method incurs numerous deficiencies. We validate a recently proposed solution method based on the conjugation of subiteration with a Newton-Krylov method, and demonstrate its superiority and beneficial characteristics.
conference paper 2006
document
Badia, S. (author), Codina, R. (author)
In this paper we suggest some algorithms for the fluid-structure interaction problem stated using a domain decomposition framework. These methods involve stabilized pressure segregation methods for the solution of the fluid problem and fixed point iterative algorithms for the fluid-structure coupling. These coupling algorithms are applied to the...
conference paper 2006
document
Bijl, H. (author), Van Zuijlen, A.H. (author), Bosscher, S. (author)
In this paper we use the multigrid algorithm - commonly used to improve the efficiency of the flow solver - to improve the efficiency of partitioned fluid-structure interaction iterations. Coupling not only the structure with the fine flow mesh, but also with the coarse flow mesh (often present due to the multigrid scheme) leads to a significant...
conference paper 2006
document
De Borst, R. (author), Hulshoff, S.J. (author), Lenz, S. (author), Munts, E.A. (author), Van Brummelen, E.H. (author), Wall, W.A. (author)
The basic idea of multiscale methods, namely the decomposition of a problem into a coarse scale and a fine scale, has in an intuitive manner been used in engineering for many decades, if not for centuries. Also in computational science, large-scale problems have been solved, and local data, for instance displacements, forces or velocities, have...
conference paper 2006
document
Vierendeels, J.A. (author)
The paper describes a new and powerful technique to solve strongly coupled fluid-structure interaction (FSI) problems with partitioned solvers. In order to achieve strong coupling approximate Jacobians of the fluid and structural solvers have to be known. In the proposed method the response to applied displacement and pressure modes are used to...
conference paper 2006
document
Bijl, H. (author), Van Zuijlen, A.H. (author), Bosscher, S. (author)
In this paper we use the multigrid algorithm - commonly used to improve the efficiency of the flow solver - to improve the efficiency of partitioned fluid-structure interaction iterations. Coupling not only the structure with the fine flow mesh, but also with the coarse flow mesh (often present due to the multigrid scheme) leads to a significant...
conference paper 2006
document
Lüddeke, H. (author), Calvo, J.B. (author), Filimon, A. (author)
Substantial requirements for future rocket technologies are the cost-efficient access to orbit as well as the increase in the system reliability. Concerning these requirements the engine is one of the most important parts and a deeper insight into the unsteady phenomena during the start phase of modern launchers is essential. Especially unsteady...
conference paper 2006
Searched for: subject%3A%22fluid%255C-structure%255C%252Binteraction%22
(41 - 51 of 51)

Pages