WY
Wenjian Yu
3 records found
1
In recent years, the application of tensors has become more widespread in fields that involve data analytics and numerical computation. Due to the explosive growth of data, low-rank tensor decompositions have become a powerful tool to harness the notorious curse of dimensionality
...
Tensor, a multi-dimensional data structure, has been exploited recently in the machine learning community. Traditional machine learning approaches are vector- or matrix-based, and cannot handle tensorial data directly. In this paper, we propose a tensor train (TT)-based kernel te
...
We propose a new tensor completion method based on tensor trains. The to-be-completed tensor is modeled as a low-rank tensor train, where we use the known tensor entries and their coordinates to update the tensor train. A novel tensor train initialization procedure is proposed sp
...