NW
Ngai Wong
8 records found
1
For many real-world image classification tasks, collecting high-quality labeled image data is challenging. Therefore, a complicated convolutional neural network might not be able to get well trained and traditional machine learning methods would be a better choice. However, tradi
...
Tensor, a multi-dimensional data structure, has been exploited recently in the machine learning community. Traditional machine learning approaches are vector- or matrix-based, and cannot handle tensorial data directly. In this paper, we propose a tensor train (TT)-based kernel te
...
MERACLE
Constructive Layer-Wise Conversion of a Tensor Train into a MERA
In this article, two new algorithms are presented that convert a given data tensor train into either a Tucker decomposition with orthogonal matrix factors or a multi-scale entanglement renormalization ansatz (MERA). The Tucker core tensor is never explicitly computed but stored a
...
Sum-product networks (SPNs) constitute an emerging class of neural networks with clear probabilistic semantics and superior inference speed over other graphical models. This brief reveals an important connection between SPNs and tensor trains (TTs), leading to a new canonical for
...
We propose a new tensor completion method based on tensor trains. The to-be-completed tensor is modeled as a low-rank tensor train, where we use the known tensor entries and their coordinates to update the tensor train. A novel tensor train initialization procedure is proposed sp
...
There has been growing interest in extending traditional vector-based machine learning techniques to their tensor forms. Support tensor machine (STM) and support Tucker machine (STuM) are two typical tensor generalization of the conventional support vector machine (SVM). However,
...
A restricted Boltzmann machine (RBM) learns a probability distribution over its input samples and has numerous uses like dimensionality reduction, classification and generative modeling. Conventional RBMs accept vectorized data that dismiss potentially important structural inform
...
This article reformulates the multiple-input-multiple-output Volterra system identification problem as an extended Kalman filtering problem. This reformulation has two advantages. First, it results in a simplification of the solution compared to the Tensor Network Kalman filter a
...