DW

D.J. Weigand

Authored

12 records found

A universal, large-scale quantum computer would be a powerful tool with applications of high value to mankind. For example, such a computer could significantly speed up the search for new medications or materials. However, the error rates of current qubit designs are simply too l ...
One of the most direct preparations of a Gottesman-Kitaev-Preskill (GKP) qubit in an oscillator uses a tunable photon-pressure (also called optomechanical) coupling of the form qˆbˆ†bˆ, enabling us to imprint the modular value of the position qˆ of one oscilla ...
Grid (or comb) states are an interesting class of bosonic states introduced by Gottesman, Kitaev, and Preskill [D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001)PLRAAN1050-294710.1103/PhysRevA.64.012310] to encode a qubit into an oscillator. A method to gen ...
3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and ...
3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and ...
3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and ...
3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and ...
Grid states can encode a qubit into a bosonic mode or be used for sensing. We propose protocols that prepare grid states using Schro¨dinger cat states, linear optics and homodyne detection without post-selection.@en
We show that one can determine both parameters of a displacement acting on an oscillator with an accuracy which scales inversely with the square root of the number of photons in the oscillator. Our results are obtained by using a grid state as a sensor state for detecting small t ...
We show that one can determine both parameters of a displacement acting on an oscillator with an accuracy which scales inversely with the square root of the number of photons in the oscillator. Our results are obtained by using a grid state as a sensor state for detecting small t ...
Gottesman, Kitaev, and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift ...
Gottesman, Kitaev, and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift ...