Authored

4 records found

In solid materials, non-trivial topological states, electron correlations and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves and quantum spin liquids. The kagome lattice, made up of cor ...
Materials with Kagome nets are of particular importance for their potential combination of strong correlation, exotic magnetism, and electronic topology. KV3Sb5 was discovered to be a layered topological metal with a Kagome net of vanadium. Here, we fabricated Josephson Junctions ...
The superconducting analogue to the semiconducting diode, the Josephson diode, has long been sought with multiple avenues to realization being proposed by theorists1–3. Showing magnetic-field-free, single-directional superconductivity with Josephson coupling, it would serve as th ...
The Kagome lattice is an important fundamental structure in condensed matter physics for investigating the interplay of electron correlation, topology, and frustrated magnetism. Recent work on Kagome metals in the AV3Sb5 (A = K, Rb, and Cs) family has shown a multitude of correla ...