RM

6 records found

Authored

Simulation of multiphase flow in fractured reservoirs still poses a challenge due to the different timescales of fluid flow in fractures and matrix. Common approaches to modeling fractures in reservoir simulators include the discrete fracture and matrix (DFM) method, where the fr ...
Geological reservoirs can be extensively fractured but the well-test signatures observed in the wells may not show a pressure transient response that is representative of naturally fractured reservoirs (NFRs): for example, one that indicates two distinct pore systems (i.e. the mo ...

Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO ...

Naturally fractured reservoirs (NFRs) account for a significant amount of the world conventional reserves but suffer from low recovery factors. Multiple techniques are, often in combination, used to detect the presence and extent of fractures in a reservoir. Of particular inte ...

Naturally fractured reservoirs are currently being considered as potential candidates for geological storage of CO2. Simulations of fractured reservoirs are notoriously challenging. Dual-porosity models are a cost-effective way of representing fractured reservoirs whose fundament ...

Spontaneous countercurrent imbibition into a finite porous medium is an important physical mechanism for many applications, included but not limited to irrigation, CO2 storage, and oil recovery. Symmetry considerations that are often valid in fractured porous media ...