TW

Tom Willems

7 records found

Authored

For offshore wind farms which are planned in sub-arctic regions like the Baltic Sea and Bohai Bay, support structure design has to account for load effects from dynamic ice-structure interaction. There is relatively high uncertainty related to dynamic ice loads as little to no ...

Fixed offshore wind turbines continue to be developed for high latitude areas where not only wind and wave loads need to be considered but also moving sea ice. Current rules and regulations for the design of fixed offshore structures in ice-covered waters do not adequately con ...

With the recent surge in development of offshore wind in the Baltic Sea, Bohai Sea and other ice-prone regions, a need has arisen for new basin tests to qualify the interaction between offshore wind turbines and sea ice. To this end, a series of model tests was performed at the A ...
Fixed offshore wind turbines are increasingly developed for high latitude areas where not only wind and wave loads need to be considered, but also moving sea ice. Current structural design rules do not adequately consider the effect of ice loading on fatigue life, due to missing ...
Offshore wind turbines at locations where sea or lake ice is present need to be designed to withstand ice-induced loading. For vertical-sided support structures, such as monopiles, the effects of ice-induced vibrations need to be considered in the design. Current practice is eith ...
Due to increasing trend of building offshore wind turbines (OWTs) in seas at high latitudes where seasonal sea ice occurs, novel methods for design of such structures are needed. Specifically, the effect of ice-induced vibrations (IIVs) on fatigue life of the structures is curren ...

Contributed

With the Paris climate accords signed in 2016, most countries have committed themselves to ambitious climate targets during the next decades. One of these targets is a dramatic increase in the overall energy portfolio's market share of renewable energies. This increase in renewab ...