YK

Yuri Y. Kovalev

Authored

17 records found

Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron

IV. The quasar 3C 345 at 18 cm: Magnetic field structure and brightness temperature

Context. Supermassive black holes in the centres of radio-loud active galactic nuclei (AGN) can produce collimated relativistic outflows (jets). Magnetic fields are thought to play a key role in the formation and collimation of these jets, but the details are much debated. Aims. ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...

Radioastron observations of the quasar 3C 273

A challenge to the brightness temperature limit

Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline ...
We present Space-VLBI RadioAstron observations at 1.6 GHz and 4.8 GHz of the flat spectrum radio quasar 3C 273, with detections on baselines up to 4.5 and 3.3 Earth Diameters, respectively. Achieving the best angular resolution at 1.6 GHz to date, we have imaged limb-brightening ...
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding exp ...
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding exp ...
The largest Key Science Program of the RadioAstron space VLBI mission is a survey of active galactic nuclei (AGN). The main goal of the survey is to measure and study the brightness of AGN cores in order to better understand the physics of their emission while taking interstellar ...
We present results from the first 22 GHz space very long baseline interferometric (VLBI) imaging observations of M87 by RadioAstron. As a part of the Nearby AGN Key Science Program, the source was observed in 2014 February at 22 GHz with 21 ground stations, reaching projected (u, ...