LD

Laura De Lorenzis

Authored

11 records found

Bayesian-EUCLID

Discovering hyperelastic material laws with uncertainties

Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID), we propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws with quantifiable uncertainties. ...

NN-EUCLID

Deep-learning hyperelasticity without stress data

We propose a new approach for unsupervised learning of hyperelastic constitutive laws with physics-consistent deep neural networks. In contrast to supervised learning, which assumes the availability of stress–strain pairs, the approach only uses realistically measurable full-f ...

When the elastic properties of structured materials become direction-dependent, the number of their descriptors increases. For example, in two-dimensions, the anisotropic behavior of materials is described by up to 6 independent elastic stiffness parameters, as opposed to only ...

We propose an automated computational algorithm for simultaneous model selection and parameter identification for the hyperelastic mechanical characterization of biological tissue and validate it on experimental data stemming from human brain tissue specimens. Following the mo ...

We extend the scope of our recently developed approach for unsupervised automated discovery of material laws (denoted as EUCLID) to the general case of a material belonging to an unknown class of constitutive behavior. To this end, we leverage the theory of generalized standar ...

We propose Neural Cellular Automata (NCA) to simulate the microstructure development during the solidification process in metals. Based on convolutional neural networks, NCA can learn essential solidification features, such as preferred growth direction and competitive grain g ...

We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floa ...

The numerical simulation of additive manufacturing techniques promises the acceleration of costly experimental procedures to identify suitable process parameters. We recently proposed Floating Isogeometric Analysis (FLIGA), a new computational solid mechanics approach, which i ...

We propose a new approach for data-driven automated discovery of isotropic hyperelastic constitutive laws. The approach is unsupervised, i.e., it requires no stress data but only displacement and global force data, which are realistically available through mechanical testing a ...

We extend EUCLID, a computational strategy for automated material model discovery and identification, to linear viscoelasticity. For this case, we perform a priori model selection by adopting a generalized Maxwell model expressed by a Prony series, and deploy EUCLID for identific ...

We propose an approach for data-driven automated discovery of material laws, which we call EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery), and we apply it here to the discovery of plasticity models, including arbitrarily shaped yield surfaces and ...