This study presents the longest time series of aerosol optical properties and Precipitable Water Vapor (PW) from two AERONET sites in the Indo-Gangetic Plains (IGP). Analyzing 22 years of data (2001–2022) from Kanpur and 16 years (2007–2023) from Gandhi College, the study focuses
...
This study presents the longest time series of aerosol optical properties and Precipitable Water Vapor (PW) from two AERONET sites in the Indo-Gangetic Plains (IGP). Analyzing 22 years of data (2001–2022) from Kanpur and 16 years (2007–2023) from Gandhi College, the study focuses on Aerosol Optical Depth (AOD), Ångström Exponent (α), Single Scattering Albedo (SSA), and Precipitable Water Vapor (PW). Significant variability in aerosol properties is observed across monthly, seasonal, and annual scales. The highest mean AOD500 values, coupled with higher α440–870 during post-monsoon and winter, indicate the dominance of fine-mode aerosols. A decrease in SSA with wavelength during these seasons further highlights the absorbing nature of these fine-mode aerosols, driven by fossil fuels and biomass burning. In contrast, summer and pre-monsoon have relatively lower mean AOD500, lowest α440–870, and increased SSA with wavelength, suggesting the dominance of coarse-mode scattering dust aerosols. PW exhibits a seasonal cycle, reaching its peak during the monsoon due to moisture transport from the Arabian Sea and Bay of Bengal, then decreasing post-monsoon as drier conditions prevail. Long-term annual trends reveal increasing aerosol concentrations, with AOD500 rising by 18% at Kanpur and 29% at Gandhi College, suggesting faster aerosol loading at the latter. Sub-period analysis indicates a slowdown in AOD500 increase during 2012–2023 at Kanpur, indicating potential stabilization post-industrialization, while Gandhi College’s more pronounced AOD500 and α440–870 increase underscores the growing impact of fine aerosols in rural IGP areas. Kanpur shows a sustained SSA increase, though at a slower rate in recent years, indicating dominant scattering aerosols. In contrast, Gandhi College has transitioned from moderate SSA increases to declines at longer wavelengths, suggesting enhanced fine-mode absorbing aerosols. At Gandhi College, the decline in PW reduces atmospheric moisture, limiting wet scavenging and likely contributing to the rise in fine-mode aerosols, especially during the monsoon and post-monsoon seasons. Our findings highlight the evolving aerosol sources in the IGP, with Kanpur stabilizing and rural areas like Gandhi College seeing continued increases in pollution.