Human fingers exhibit remarkable dexterity and adaptability through a combination of structures with varying stiffness levels, ranging from soft tissues (low stiffness) to tendons and cartilage (medium stiffness) to bones (high stiffness). This paper focuses on the development of
...
Human fingers exhibit remarkable dexterity and adaptability through a combination of structures with varying stiffness levels, ranging from soft tissues (low stiffness) to tendons and cartilage (medium stiffness) to bones (high stiffness). This paper focuses on the development of a robotic finger that emulates these multi-stiffness characteristics. Specifically, we propose utilizing a lattice configuration, parameterized by voxel size and unit cell geometry, to achieve fine-tuned stiffness properties with high precision. A key advantage of this approach is its compatibility with single-process 3D printing, which eliminates the need for manual assembly of components with varying stiffness. Using this method, we present a novel, human-like robotic finger and a soft gripper. The gripper is integrated with a rigid manipulator and demonstrated in pick-and-place tasks, showcasing its effectiveness.