NS

Neil Sinclair

Authored

8 records found

Long optical storage times are an essential requirement to establish high-rate entanglement distribution over large distances using memory-based quantum repeaters. Rare earth ion-doped crystals are arguably well-suited candidates for building such quantum memories. Toward this en ...
We characterize the optical coherence and energy-level properties of the 795-nm H63 to H43 transition of Tm3+ in a Ti4+:LiNbO3 waveguide at temperatures as low as 0.65 K. Coherence properties are measured with varied temperature, magnetic field, optical excitation power and wavel ...
Efficient generation, guiding, and detection of phonons, or mechanical vibrations, are of interest in various fields, including radio-frequency communication, sensing, and quantum information. Diamond is a useful platform for phononics because of the presence of strain-sensitive ...
We demonstrate the transmission of a ∼4-GHz surface acoustic wave across a suspended diamond waveguide. This enables simultaneous coherent mechanical driving of, and optical access to, diamond-based color centers.@en
Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sublevels of erbium ions that are doped into a lithium niobate wa ...
Large-scale fiber-based quantum networks will likely employ telecommunication-wavelength photons of around 1550 nm wavelength to exchange quantum information between remote nodes, and quantum memories, ideally operating at the same wavelength, that allow the transmission distance ...
In this work, we fabricate a multimode quantum memory out of a thulium-doped crystal and demonstrate storage of laser pulses of up to 100 µsec. A significant step forward for creating quantum memories with long optical storage times.@en
In this work, we fabricate a multimode quantum memory out of a thulium-doped crystal and demonstrate storage of laser pulses of up to 100 µsec. A significant step forward for creating quantum memories with long optical storage times.@en