Shih Chii
8 records found
1
Authored
Epilepsy is a common disease of the nervous system. Timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. This paper presents a tiny neuromorphic Spiking Convolutional Tr ...
Recurrent Neural Networks (RNNs) are useful in temporal sequence tasks. However, training RNNs involves dense matrix multiplications which require hardware that can support a large number of arithmetic operations and memory accesses. Implementing online training of RNNs on the ...
Keyword spotting (KWS) is an important task on edge low-power audio devices. A typical edge KWS system consists of a front-end feature extractor which outputs mel-scale frequency cepstral coefficients (MFCC) features followed by a back-end neural network classifier. KWS edge d ...
This article presents the first keyword spotting (KWS) IC that uses a ring-oscillator-based time-domain processing technique for its analog feature extractor (FEx). Its extensive usage of time-encoding schemes allows the analog audio signal to be processed in a fully time-doma ...
Spartus
A 9.4 TOp/s FPGA-Based LSTM Accelerator Exploiting Spatio-Temporal Sparsity
Long short-term memory (LSTM) recurrent networks are frequently used for tasks involving time-sequential data, such as speech recognition. Unlike previous LSTM accelerators that either exploit spatial weight sparsity or temporal activation sparsity, this article proposes a new ...
Voice-controlled interfaces on acoustic Internet-of-Things (IoT) sensor nodes and mobile devices require integrated low-power always-on wake-up functions such as Voice Activity Detection (VAD) and Keyword Spotting (KWS) to ensure longer battery life. Most VAD and KWS ICs focus ...