MB

Manuele Bicego

5 records found

Because outliers are very different from the rest of the data, it is natural to represent outliers by their distances to other objects. Furthermore, there are many scenarios in which only pairwise distances are known, and feature-based outlier detection methods cannot directly be ...

Also for k-means

More data does not imply better performance

Arguably, a desirable feature of a learner is that its performance gets better with an increasing amount of training data, at least in expectation. This issue has received renewed attention in recent years and some curious and surprising findings have been reported on. In essence ...
Isolation Forests are one of the most successful outlier detection techniques: they isolate outliers by performing random splits in each node. It has been recently shown that a trained Random Forest-based model can also be used to define and extract informative distance measures ...
Isolation Forests are a very successful approach for solving outlier detection tasks. Isolation Forests are based on classical Random Forest classifiers that require feature vectors as input. There are many situations where vectorial data is not readily available, for instance wh ...
We study the problem of Protein Remote Homology Detection, which assesses the functional similarity of two proteins. We approach this as a problem of binary multiple-instance learning (MIL) that aims to distinguish between homologous and non-homologous proteins. The particular MI ...