FK

Feiyu Kang

Authored

7 records found

Metallic lithium is a promising anode to increase the energy density of rechargeable lithium batteries. Despite extensive efforts, detrimental reactivity of lithium metal with electrolytes and uncontrolled dendrite growth remain challenging interconnected issues hindering highly ...
Nanosized Li4Ti5O12 (LTO) materials enabling high rate performance suffer from a large specific surface area and low tap density lowering the cycle life and practical energy density. Microsized LTO materials have high density which generally compromises their rate capability. Aim ...
Through a facile sodium sulfide (Na2S)-assisted hydrothermal treatment, clean and nondefective surfaces are constructed on micrometer-sized Li4Ti5O12 particles. The remarkable improvement of surface quality shows a higher first cycle Coulombic efficiency (≈95%), a significantly e ...
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant-nest-like network and a dense substrate is reported for an ultrastable Li me ...
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant-nest-like network and a dense substrate is reported for an ultrastable Li me ...
It is a huge challenge for high-tap-density electrodes to achieve high volumetric energy density but without compromising the ionic transportation. Herein, we prepared compact Li4Ti5O12 (LTO) microspheres consisting of densely packed primary nanoparticles. The real space distribu ...
Surface degradation is a common challenge for many electrode materials. The active surface usually reacts with the molecules in the surrounding environment to form byproducts that hinder the diffusion channels for Li ions ...