ML

16 records found

Lithium metal with its high theoretical capacity and low negative potential is considered one of the most important candidates to raise the energy density of all-solid-state batteries. However, lithium filament growth and its induced solid electrolyte decomposition pose severe ch ...

Author Correction

Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements (Nature Communications, (2021), 12, 1, (5943), 10.1038/s41467-021-26190-2)

The original version of this article contained errors in Figure 3a and Figure 3f. In Figure 3a, the activation energies (Ea) were calculated using a log scale instead of a logarithm ln scale. In Figure 3f, the y-axis interval was not properly selected. The correct y-axis interval ...
Improving the reversibility of lithium metal batteries is one of the challenges in current battery research. This requires better fundamental understanding of the evolution of the lithium deposition morphology, which is very complex due to the various parameters involved in diffe ...
The development of commercial solid-state batteries has to date been hindered by the individual limitations of inorganic and organic solid electrolytes, motivating hybrid concepts. However, the room-temperature conductivity of hybrid solid electrolytes is still insufficient to su ...
ConspectusDriven by the intrinsic safety and potential to achieve higher energy densities, solid-state Li-metal batteries are intensively researched. The ideal solid electrolyte should possess a high conductivity, should have electrochemical stability both toward the Li-metal ano ...
A key challenge for solid-state-batteries development is to design electrode-electrolyte interfaces that combine (electro)chemical and mechanical stability with facile Li-ion transport. However, while the solid-electrolyte/electrode interfacial area should be maximized to facilit ...
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant-nest-like network and a dense substrate is reported for an ultrastable Li me ...
Layered Na-based oxides with the general composition of NaxTMO2 (TM: transition metal) have attracted significant attention for their high compositional diversity that provides tunable electrochemical performance for electrodes in sodium-ion batteries. The various compositions br ...
Metallic lithium is a promising anode to increase the energy density of rechargeable lithium batteries. Despite extensive efforts, detrimental reactivity of lithium metal with electrolytes and uncontrolled dendrite growth remain challenging interconnected issues hindering highly ...
The influence of space-charge layers on the ionic charge transport over cathode-solid electrolyte interfaces in all-solid-state batteries remains unclear because of the difficulty to unravel it from other contributions to the ion transport over the interfaces. Here, we reveal the ...
The attention towards lithium (Li) metal anodes has been rekindled in recent years as it would boost the energy-density of Li batteries. However, notorious safety issues and cycling instability severely hinder their commercialization, especially when cycled in traditional carboni ...
Solid-state lithium-metal batteries are considered to be promising candidates for next-generation high-energy density storage devices to power electrical vehicles. Critical challenges for solid-state lithium-metal batteries include the large morphological changes associated with ...
Surface degradation is a common challenge for many electrode materials. The active surface usually reacts with the molecules in the surrounding environment to form byproducts that hinder the diffusion channels for Li ions ...
The development of safe and high-performance Li-metal anodes is crucial to meet the demanded increase in energy density of batteries. However, severe reactivity of Li metal with typical electrolytes and dendrite formation leads to a poor cycle life and safety concerns. Therefore, ...
In common hybrid solid electrolytes (HSEs), either the ionic conductivity of the polymer electrolyte is enhanced by the presence of a nanosized inorganic filler, which effectively decrease the glass-transition temperature, or the polymer solid electrolyte acts mostly as a flexibl ...
The increasing demands of energy storage require the significant improvement of current Li-ion battery electrode materials and the development of advanced electrode materials. Thus, it is necessary to gain an in-depth understanding of the reaction processes, degradation mechanism ...