MW
M. Wagemaker
175 records found
1
...
Hybrid solid electrolytes (HSEs) leverage the benefits of their organic and inorganic components, yet optimizing ion transport and component compatibility requires a deeper understanding of their intricate ion transport mechanisms. Here, macroscopic charge transport is correlated
...
Sulfide-based solid-state batteries (SSBs) are emerging as a top contender for next-generation rechargeable batteries with improved safety and higher energy densities. However, SSBs with Ni-rich cathode materials such as LiNi0.82Mn0.07Co0.11O2 (NMC82) exhibit several chemomechani
...
Rechargeable Li||I2 batteries based on liquid organic electrolytes suffer from pronounced polyiodides shuttling and safety concerns, which can be potentially tackled by the use of solid-state electrolytes. However, current all-solid-state Li||I2 batteries only demonstrate limited
...
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. Ti3C2Tx MXene provides several advantages over traditional metallic current collectors like Cu and Ti,
...
Electrode–electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradati
...
By varying the bromine content and cooling method, we are able to induce site disorder in the Li6-xPS5-xBr1+x (x = 0, 0.3, 0.5) system via two routes, allowing us to disentangle the impact of site disorder and chemical composition on conductivity.
...
Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all-solid-state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability
...
One of the primary challenges to improving lithium-ion batteries lies in comprehending and controlling the intricate interphases. However, the complexity of interface reactions and the buried nature make it difficult to establish the relationship between the interphase characteri
...
Optimizing ionic transport in argyrodites
A unified view on the role of sulfur/halide distribution and local environments
Understanding diffusion mechanisms in solid electrolytes is crucial for advancing solid-state battery technologies. This study investigates the role of structural disorder in Li7−xPS6−xBrx argyrodites using ab initio molecular dynamics, focusing on the correlation between key str
...
The impact of lithium carbonate on tape cast LLZO battery separators
A balanced interplay between lithium loss and relithiation
Ceramic membranes made of garnet Li7Zr3La2O12 (LLZO) are promising separators for lithium metal batteries because they are chemically stable to lithium metal and can resist the growth of lithium dendrites. Free-standing garnet separators can be produced on a large scale using tap
...
Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1–3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid ca
...
Due to their high ionic conductivity, lithium-ion conducting argyrodites show promise as solid electrolytes for solid-state batteries. Aliovalent substitution is an effective technique to enhance the transport properties of Li6PS5Br, where aliovalent Si subs
...
Formation cycling is a critical process aimed at improving the performance of lithium ion (Li-ion) batteries during subsequent use. Achieving highly reversible Li-metal anodes, which would boost battery energy density, is a formidable challenge. Here, formation cycling and its im
...
Achieving both high redox activity and rapid ion transport is a critical and pervasive challenge in electrochemical energy storage applications. This challenge is significantly magnified when using large-sized charge carriers, such as the sustainable ammonium ion (NH4<
...
Antiperovskite active materials for metal-ion batteries
Expected advantages, limitations, and perspectives
Metal-ion batteries, particularly lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries, are currently among the most compelling technologies for energy storage. However, the growing demands driven by wide implementation of batteries in multiple applications call for further imp
...
Sodium-ion batteries have not only garnered substantial attention for grid-scale energy storage owing to the higher abundance of sodium compared with lithium, but also present the possibility of fast charging because of the inherently higher sodium-ion mobility. However, it remai
...
Nickel-rich layered oxide cathodes promise ultrahigh energy density but is plagued by the mechanical failure of the secondary particle upon (de)lithiation. Existing approaches for alleviating the structural degradation could retard pulverization, yet fail to tune the stress distr
...
The formation of stable interphases on the electrodes is crucial for rechargeable lithium (Li) batteries. However, next-generation high-energy batteries face challenges in controlling interphase formation due to the high reactivity and structural changes of electrodes, leading to
...
Transport electrification and grid storage hinge largely on fast-charging capabilities of Li- and Na-ion batteries, but anodes such as graphite with plating issues drive the scientific focus towards anodes with slopped storage potentials. Here we report fast charging of ampere-ho
...
The interlaboratory comparability and reproducibility of all-solid-state battery cell cycling performance are poorly understood due to the lack of standardized set-ups and assembly parameters. This study quantifies the extent of this variability by providing commercially sourced
...