MW

M. Wagemaker

184 records found

The instability of P─F bond-based electrolyte (PFE) under ambient conditions presents one of the biggest challenges for the production, usage, and recycling of lithium (Li) batteries. It increases the cost of battery production, decreases battery service life, and harms human hea ...
One of the major challenges in advancing polymer-inorganic hybrid solid electrolytes (HSEs) lies in comprehending and controlling their internal structure. In addition, the intricate interplay between multiple phases further complicates efforts to establish the structure-property ...
Conspectus

Layered transition metal (TM) compounds are pivotal in the development of rechargeable battery technologies for efficient energy storage. The history of these materials dates back to the 1970s, when the concept of intercalation chemistry was introduced into th ...

Irreducible Solid Electrolytes

New Perspectives on Stabilizing High-Capacity Anodes in Solid-State Batteries

Irreducible solid electrolytes (SEs), characterized by non-Li framework ions in their lowest oxidation states, offer intrinsic compatibility with low-reduction-potential, high-capacity negative electrodes, such as lithium metal and silicon. In these SE materials, disorder enginee ...
Sulfide-based solid-state batteries (SSBs) are emerging as a top contender for next-generation rechargeable batteries with improved safety and higher energy densities. However, SSBs with Ni-rich cathode materials such as LiNi0.82Mn0.07Co0.11O2 (NMC82) exhibit several chemomechani ...
Hybrid solid electrolytes (HSEs) leverage the benefits of their organic and inorganic components, yet optimizing ion transport and component compatibility requires a deeper understanding of their intricate ion transport mechanisms. Here, macroscopic charge transport is correlated ...
Electrode–electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradati ...
Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all-solid-state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability ...
Phase separation, inducing a miscibility gap and non-monotonic open-circuit potential (OCP), is typical for widespread Li-ion battery electrodes such as LiFePO4, Li4Ti5OPhase separation, inducing a miscibility gap and non-monotonic open-circuit potential (OC ...
Rechargeable Li||I2 batteries based on liquid organic electrolytes suffer from pronounced polyiodides shuttling and safety concerns, which can be potentially tackled by the use of solid-state electrolytes. However, current all-solid-state Li||I2 batteries only demonstrate limited ...
Solid-state batteries currently receive extensive attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. However, most highly conducting solid electrolytes decompose a ...
All-solid-state batteries receive ample attention due to their promising safety characteristics and energy density. The latter holds true if they are compatible with next-generation high-capacity anodes, but most highly ion-conductive solid electrolytes decompose at low operating ...
By varying the bromine content and cooling method, we are able to induce site disorder in the Li6-xPS5-xBr1+x (x = 0, 0.3, 0.5) system via two routes, allowing us to disentangle the impact of site disorder and chemical composition on conductivity. ...
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. Ti3C2Tx MXene provides several advantages over traditional metallic current collectors like Cu and Ti, ...
Achieving both high redox activity and rapid ion transport is a critical and pervasive challenge in electrochemical energy storage applications. This challenge is significantly magnified when using large-sized charge carriers, such as the sustainable ammonium ion (NH4< ...
Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that ...
The interlaboratory comparability and reproducibility of all-solid-state battery cell cycling performance are poorly understood due to the lack of standardized set-ups and assembly parameters. This study quantifies the extent of this variability by providing commercially sourced ...
Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1–3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid ca ...
Due to their high ionic conductivity, lithium-ion conducting argyrodites show promise as solid electrolytes for solid-state batteries. Aliovalent substitution is an effective technique to enhance the transport properties of Li6PS5Br, where aliovalent Si subs ...

The impact of lithium carbonate on tape cast LLZO battery separators

A balanced interplay between lithium loss and relithiation

Ceramic membranes made of garnet Li7Zr3La2O12 (LLZO) are promising separators for lithium metal batteries because they are chemically stable to lithium metal and can resist the growth of lithium dendrites. Free-standing garnet separators can be produced on a large scale using tap ...