MW

M. Wagemaker

183 records found

One of the major challenges in advancing polymer-inorganic hybrid solid electrolytes (HSEs) lies in comprehending and controlling their internal structure. In addition, the intricate interplay between multiple phases further complicates efforts to establish the structure-property ...
All-solid-state batteries receive ample attention due to their promising safety characteristics and energy density. The latter holds true if they are compatible with next-generation high-capacity anodes, but most highly ion-conductive solid electrolytes decompose at low operating ...
The instability of P─F bond-based electrolyte (PFE) under ambient conditions presents one of the biggest challenges for the production, usage, and recycling of lithium (Li) batteries. It increases the cost of battery production, decreases battery service life, and harms human hea ...
Sulfide-based solid-state batteries (SSBs) are emerging as a top contender for next-generation rechargeable batteries with improved safety and higher energy densities. However, SSBs with Ni-rich cathode materials such as LiNi0.82Mn0.07Co0.11O2 (NMC82) exhibit several chemomechani ...
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. Ti3C2Tx MXene provides several advantages over traditional metallic current collectors like Cu and Ti, ...
Electrode–electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradati ...
By varying the bromine content and cooling method, we are able to induce site disorder in the Li6-xPS5-xBr1+x (x = 0, 0.3, 0.5) system via two routes, allowing us to disentangle the impact of site disorder and chemical composition on conductivity. ...
Phase separation, inducing a miscibility gap and non-monotonic open-circuit potential (OCP), is typical for widespread Li-ion battery electrodes such as LiFePO4, Li4Ti5OPhase separation, inducing a miscibility gap and non-monotonic open-circuit potential (OC ...
Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all-solid-state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability ...
Rechargeable Li||I2 batteries based on liquid organic electrolytes suffer from pronounced polyiodides shuttling and safety concerns, which can be potentially tackled by the use of solid-state electrolytes. However, current all-solid-state Li||I2 batteries only demonstrate limited ...
Hybrid solid electrolytes (HSEs) leverage the benefits of their organic and inorganic components, yet optimizing ion transport and component compatibility requires a deeper understanding of their intricate ion transport mechanisms. Here, macroscopic charge transport is correlated ...
Conspectus

Layered transition metal (TM) compounds are pivotal in the development of rechargeable battery technologies for efficient energy storage. The history of these materials dates back to the 1970s, when the concept of intercalation chemistry was introduced into th ...
Solid-state batteries currently receive extensive attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. However, most highly conducting solid electrolytes decompose a ...
Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that ...

Antiperovskite active materials for metal-ion batteries

Expected advantages, limitations, and perspectives

Metal-ion batteries, particularly lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries, are currently among the most compelling technologies for energy storage. However, the growing demands driven by wide implementation of batteries in multiple applications call for further imp ...

The impact of lithium carbonate on tape cast LLZO battery separators

A balanced interplay between lithium loss and relithiation

Ceramic membranes made of garnet Li7Zr3La2O12 (LLZO) are promising separators for lithium metal batteries because they are chemically stable to lithium metal and can resist the growth of lithium dendrites. Free-standing garnet separators can be produced on a large scale using tap ...

Optimizing ionic transport in argyrodites

A unified view on the role of sulfur/halide distribution and local environments

Understanding diffusion mechanisms in solid electrolytes is crucial for advancing solid-state battery technologies. This study investigates the role of structural disorder in Li7−xPS6−xBrx argyrodites using ab initio molecular dynamics, focusing on the correlation between key str ...

Correction to

Origin of fast charging in hard carbon anodes (Nature Energy, (2024), 9, 2, (134-142), 10.1038/s41560-023-01414-5)

Correction to: Nature Energyhttps://doi.org/10.1038/s41560-023-01414-5, published online 3 January 2024. In the version of this article initially published, lithium (green, “Li”) and sodium (purple, “Na”) color key labels in Fig. 3a,d,e were interchanged and are now amended in th ...
All-solid-state lithium batteries have attracted widespread attention for next-generation energy storage, potentially providing enhanced safety and cycling stability. The performance of such batteries relies on solid electrolyte materials; hence many structures/phases are being i ...
The formation of stable interphases on the electrodes is crucial for rechargeable lithium (Li) batteries. However, next-generation high-energy batteries face challenges in controlling interphase formation due to the high reactivity and structural changes of electrodes, leading to ...