MW

M. Wagemaker

176 records found

Conspectus

Layered transition metal (TM) compounds are pivotal in the development of rechargeable battery technologies for efficient energy storage. The history of these materials dates back to the 1970s, when the concept of intercalation chemistry was introduced into th ...
Electrode–electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradati ...
One of the major challenges in advancing polymer-inorganic hybrid solid electrolytes (HSEs) lies in comprehending and controlling their internal structure. In addition, the intricate interplay between multiple phases further complicates efforts to establish the structure-property ...
Rechargeable Li||I2 batteries based on liquid organic electrolytes suffer from pronounced polyiodides shuttling and safety concerns, which can be potentially tackled by the use of solid-state electrolytes. However, current all-solid-state Li||I2 batteries only demonstrate limited ...
By varying the bromine content and cooling method, we are able to induce site disorder in the Li6-xPS5-xBr1+x (x = 0, 0.3, 0.5) system via two routes, allowing us to disentangle the impact of site disorder and chemical composition on conductivity. ...
Hybrid solid electrolytes (HSEs) leverage the benefits of their organic and inorganic components, yet optimizing ion transport and component compatibility requires a deeper understanding of their intricate ion transport mechanisms. Here, macroscopic charge transport is correlated ...
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. Ti3C2Tx MXene provides several advantages over traditional metallic current collectors like Cu and Ti, ...
Sulfide-based solid-state batteries (SSBs) are emerging as a top contender for next-generation rechargeable batteries with improved safety and higher energy densities. However, SSBs with Ni-rich cathode materials such as LiNi0.82Mn0.07Co0.11O2 (NMC82) exhibit several chemomechani ...
Solid-state batteries currently receive extensive attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. However, most highly conducting solid electrolytes decompose a ...
Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all-solid-state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability ...

Correction to

Origin of fast charging in hard carbon anodes (Nature Energy, (2024), 9, 2, (134-142), 10.1038/s41560-023-01414-5)

Correction to: Nature Energyhttps://doi.org/10.1038/s41560-023-01414-5, published online 3 January 2024. In the version of this article initially published, lithium (green, “Li”) and sodium (purple, “Na”) color key labels in Fig. 3a,d,e were interchanged and are now amended in th ...
One of the primary challenges to improving lithium-ion batteries lies in comprehending and controlling the intricate interphases. However, the complexity of interface reactions and the buried nature make it difficult to establish the relationship between the interphase characteri ...
Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1–3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid ca ...
Due to their high ionic conductivity, lithium-ion conducting argyrodites show promise as solid electrolytes for solid-state batteries. Aliovalent substitution is an effective technique to enhance the transport properties of Li6PS5Br, where aliovalent Si subs ...
The formation of stable interphases on the electrodes is crucial for rechargeable lithium (Li) batteries. However, next-generation high-energy batteries face challenges in controlling interphase formation due to the high reactivity and structural changes of electrodes, leading to ...
Sodium-ion batteries have not only garnered substantial attention for grid-scale energy storage owing to the higher abundance of sodium compared with lithium, but also present the possibility of fast charging because of the inherently higher sodium-ion mobility. However, it remai ...
All-solid-state lithium batteries have attracted widespread attention for next-generation energy storage, potentially providing enhanced safety and cycling stability. The performance of such batteries relies on solid electrolyte materials; hence many structures/phases are being i ...

The impact of lithium carbonate on tape cast LLZO battery separators

A balanced interplay between lithium loss and relithiation

Ceramic membranes made of garnet Li7Zr3La2O12 (LLZO) are promising separators for lithium metal batteries because they are chemically stable to lithium metal and can resist the growth of lithium dendrites. Free-standing garnet separators can be produced on a large scale using tap ...
Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that ...
Formation cycling is a critical process aimed at improving the performance of lithium ion (Li-ion) batteries during subsequent use. Achieving highly reversible Li-metal anodes, which would boost battery energy density, is a formidable challenge. Here, formation cycling and its im ...