PO

P. Ombrini

6 records found

Electrode–electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradati ...
Sulfide-based solid-state batteries (SSBs) are emerging as a top contender for next-generation rechargeable batteries with improved safety and higher energy densities. However, SSBs with Ni-rich cathode materials such as LiNi0.82Mn0.07Co0.11O2 (NMC82) exhibit several chemomechani ...
Increasing the electrode thickness, thereby reducing the proportion of inactive cell components, is one way to achieve higher-energy-density lithium-ion batteries. This, however, results in higher electronic and ionic overpotentials and/or mechanical failure induced by binder mig ...
Transport electrification and grid storage hinge largely on fast-charging capabilities of Li- and Na-ion batteries, but anodes such as graphite with plating issues drive the scientific focus towards anodes with slopped storage potentials. Here we report fast charging of ampere-ho ...

Correction to

Origin of fast charging in hard carbon anodes (Nature Energy, (2024), 9, 2, (134-142), 10.1038/s41560-023-01414-5)

Correction to: Nature Energyhttps://doi.org/10.1038/s41560-023-01414-5, published online 3 January 2024. In the version of this article initially published, lithium (green, “Li”) and sodium (purple, “Na”) color key labels in Fig. 3a,d,e were interchanged and are now amended in th ...

Thermodynamics of multi-sublattice battery active materials

From an extended regular solution theory to a phase-field model of LiMnyFe1-yPO4

Phase separation during the lithiation of redox-active materials is a critical factor affecting battery performance, including energy density, charging rates, and cycle life. Accurate physical descriptions of these materials are necessary for understanding underlying lithiation m ...