M. Pini
66 records found
1
This article presents a data-driven method to evaluate thermodynamic properties of pure fluids and mixtures of fixed composition in the ideal- and nonideal thermodynamic states. Thermodynamic consistency is ensured by computing the fluid properties on the basis of the entropy pot
...
This study presents an automated shape optimization method for heat sinks. The computational framework has been developed by combining a conjugate heat transfer solver with adjoint capabilities, a CAD parametrization tool, and a gradient-based optimizer. The test case considers t
...
The ORCHID turbine is a laboratory single-stage 10 kW high-speed (∼100 krpm) radial-inflow turbine for high-temperature/high-efficiency organic Rankine cycle (ORC) systems, designed at the Aerospace Propulsion and Power laboratory of Delft University of Technology. It will be ins
...
Heat exchangers are key components of thermal energy conversion systems, however, their optimal design is still based on reduced order models relying on semi-empirical heat transfer correlations. CFD-based design optimization emerged as a viable method to provide a significant im
...
A supersonic inlet turbine can extract substantial energy from the highly fluctuating and transonic flow delivered by a rotating detonation combustor (RDC). However, a transition duct is necessary to achieve the supersonic inlet conditions required by the turbine. In this work, t
...
Small-scale turbomachinery operating at high rotational speed is a key technology for increasing the power density of energy and propulsion systems. A notable example is the turbine of an organic Rankine cycle turbogenerator for thermal recuperation from prime engines and industr
...
High-speed supersonic radial compressors are a critical enabling technology for meeting the requirements of future aviation-propulsion and thermal-management systems. These turbomachines must be designed to be both efficient and robust on the widest possible operating range. Flow
...
The successful implementation of an airborne propulsion system based on hydrogen-powered fuel cell technology highly depends on the development of an efficient, lightweight and compact air supply compressor. Meeting these requirements by designing the compressor using conventiona
...
The radial-inflow turbine (RIT) is a widely adopted turbo-expander in power and propulsion systems of low-to-medium power capacity due to its high efficiency and compactness. Compared to conventional radial turbines for gas turbines and air cycle machines, the design of expanders
...
Small-scale turbomachinery operating at high rotational speed is a key technology for increasing the power density of energy and propulsion systems. A notable example is the turbine of an organic Rankine cycle turbogenerator for thermal recuperation from prime engines and industr
...
In this work, we present an investigation about the sources of dissipation in adiabatic boundary layers of non-ideal compressible fluid flows. Direct numerical simulations (DNS) of transitional, zero-pressure gradient boundary layer flows are performed for two fluids characterize
...
The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal g
...
The blade solidity, namely the blade chordtopitch ratio, largely affects the fluiddynamic performance of turbomachinery. For turbomachines operating with air or steam, the optimal value of the solidity which maximizes the efficiency is estimated with empirical correlations such a
...
High-speed supersonic radial compressors are a critical enabling technology for meeting the requirements of future aviation-propulsion and thermal-management systems. These turbomachines must be designed to be both efficient and robust on the widest possible operating range. Flow
...
The blade solidity, namely the blade chord-to-pitch ratio, largely affects the fluid-dynamic performance of turbomachinery and its cost. For turbomachines operating with air or steam, the optimal value of the solidity which maximizes the efficiency is estimated with empirical cor
...
This work assessed the accuracy of the SU2 flow solver in predicting the isentropic expansion of Siloxane MM through the converging-diverging nozzle test section of the Organic Rankine Cycle Hybrid Integrated Device (ORCHID) [9]. The expansion is modeled using compressible Euler
...
Modeling non-ideal compressible flows in the context of computational fluid-dynamics (CFD) requires the calculation of thermodynamic state properties at each step of the iterative solution process. To this purpose, the use of a built-in fundamental equation of state (EoS) in entr
...
In this work, we investigate the sources of dissipation in adiabatic boundary layers of non-ideal compressible fluid flows. Direct numerical simulations of transitional, zero-pressure gradient boundary layers are performed with an in-house solver considering two fluids characteri
...