Circular Image

S. Hickel

174 records found

A detailed derivation, analysis, and verification is given for the non-orthogonal, plane-marching Parabolized Stability Equations (PSE) approach. In applying the approach to a flow distorted by a medium-amplitude crossflow vortex, we determine its linear secondary instability mec ...
A comprehensive set of accurate physical models and numerical simulation methods for transcritical dual fuel combustion systems is presented. The method combines multiphase real-fluid physical properties modeling, flamelet-based chemistry reduction, and large-eddy simulation (LES ...
High-speed supersonic radial compressors are a critical enabling technology for meeting the requirements of future aviation-propulsion and thermal-management systems. These turbomachines must be designed to be both efficient and robust on the widest possible operating range. Flow ...
Leading-edge protuberances on airfoils have been shown to soften the onset of aerodynamic stall and to increase lift in the post-stall regime. The present study examines the effect of tubercles during dynamic stall. Pitching airfoils with tubercles of different amplitudes are stu ...
Simulations of reacting multiphase flows tend to display an inhomogeneously distributed computational intensity over the spatial and temporal domains. The time-to-solution of chemical reaction rates can span multiple orders of magnitude due to the emergence of combustible kernels ...
Direct numerical simulations (DNS) are conducted for reactants-to-products counterflow configurations at turbulent conditions to understand how strain affects the structure and NOx emissions of lean premixed hydrogen flames. Two nominal equivalence ratio conditions, 0.5 and 0.7, ...
We present novel observations from direct numerical simulations of transitional Mach 8 flow over a 15° compression ramp ablator. Heating streaks over the ramp are seen to undergo a half-wavelength shift near the location of transition from laminar to turbulent boundary layer flow ...
The nacelle of aircraft engines is coated with acoustic liners to reduce engine noise emissions. An undesirable side effect of acoustic liners is that they increase aerodynamic drag. For the first time, the authors study this drag penalty through pore-resolved direct numerical si ...
This study introduces a new numerical framework for the accurate simulation of transcritical reacting sprays using a multiphase, real-fluid, flamelet-based model. The transcritical flamelet library is combined with large-eddy simulations (LES) and rapid vapor–liquid equilibrium c ...
Stationary velocity-perturbation streaks have recently been identified in laminar swept-wing boundary-layer flow interacting with a surface forward-facing step. Streaky structures at the step promote early laminar-turbulent transition under certain conditions. This work utilizes ...
High-speed supersonic radial compressors are a critical enabling technology for meeting the requirements of future aviation-propulsion and thermal-management systems. These turbomachines must be designed to be both efficient and robust on the widest possible operating range. Flow ...
Pore-resolved direct numerical simulations (DNS) of turbulent flows grazing over acoustic liners with aerodynamically and/or acoustically optimized orifice configurations are presented. The DNS explore a large parameter space, studying various families of orifice geometries, incl ...
We revisit the origin of low-frequency unsteadiness in turbulent recirculation bubbles (TRBs), and, in particular, the hypothesis of a dynamic feedback mechanism between unconstrained separation and reattachment locations. To this end, we conduct wall-resolved large-eddy simulati ...
We propose several enhancements to improve the accuracy and performance of the digital filter turbulent inflow generation technique and assess their efficacy in the context of wall-resolved large-eddy simulations of a compressible turbulent boundary layer. Improvements of accurac ...
We present pore-resolved direct numerical simulations (DNS) of turbulent flows grazing over acoustic liners with aerodynamically and/or acoustically optimised orifice configurations. Our DNS explore a large parameter space, studying different families of orifice geometries includ ...
Wall-resolved large-eddy simulations (LES) are performed to investigate Reynolds number effects in supersonic turbulent boundary layers (TBLs) at Mach 2.0. The resulting database covers more than a decade of friction Reynolds number Reτ, from 242 to 5554, which conside ...
A novel passive flow-control method for shock-wave/turbulent boundary-layer interactions (STBLI) is investigated. The method relies on a structured roughness pattern constituted by streamwise-aligned ridges. Its effectiveness is assessed with wall-resolved large-eddy simulations ...
A novel mechanism is identified, through which a spanwise-invariant surface feature (a two-dimensional forward-facing step) significantly stabilizes the stationary crossflow instability of a three-dimensional boundary layer. The mechanism is termed here as reverse lift-up effect, ...
We investigate Reynolds number effects in strong shock-wave/turbulent boundary-layer interactions (STBLI) by leveraging a new database of wall-resolved and long-integrated large-eddy simulations. The database encompasses STBLI with massive boundary-layer separation at Mach 2.0, i ...