T. Alderliesten
38 records found
1
Authored
Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find solutions well spread over all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found set of solutions is not smoot ...
Deep learning algorithms have become the golden standard for segmentation of medical imaging data. In most works, the variability and heterogeneity of real clinical data is acknowledged to still be a problem. One way to automatically overcome this is to capture and exploit thi ...
To achieve excellent performance with modern neural networks, having the right network architecture is important. Neural Architecture Search (NAS) concerns the automatic discovery of task-specific network architectures. Modern NAS approaches leverage super-networks whose subne ...
Deep Neural Networks (DNNs) have the potential for making various clinical procedures more time-efficient by automating medical image segmentation. Due to their strong, in some cases human-level, performance, they have become the standard approach in this field. The design of ...
Genetic programming (GP) is one of the best approaches today to discover symbolic regression models. To find models that trade off accuracy and complexity, the non-dominated sorting genetic algorithm II (NSGA-II) is widely used. Unfortunately, it has been shown that NSGA-II ca ...
We propose a novel surrogate-assisted Evolutionary Algorithm for solving expensive combinatorial optimization problems. We integrate a surrogate model, which is used for fitness value estimation, into a state-of-the-art P3-like variant of the Gene-Pool Optimal Mixing Algorithm ...
Anatomical landmark correspondences in medical images can provide additional guidance information for the alignment of two images, which, in turn, is crucial for many medical applications. However, manual landmark annotation is labor-intensive. Therefore, we propose an end-to- ...
Feature construction can substantially improve the accuracy of Machine Learning (ML) algorithms. Genetic Programming (GP) has been proven to be effective at this task by evolving non-linear combinations of input features. GP additionally has the potential to improve ML explain ...
There has recently been great progress in automatic segmentation of medical images with deep learning algorithms. In most works observer variation is acknowledged to be a problem as it makes training data heterogeneous but so far no attempts have been made to explicitly captur ...
Often, real-world problems are of the gray-box type. It has been shown that the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is in principle capable of exploiting such a Gray-Box Optimization (GBO) setting using linkage models that capture dependencie ...
Purpose: Current phantoms used for the dose reconstruction of long-term childhood cancer survivors lack individualization. We design a method to predict highly individualized abdominal three-dimensional (3-D) phantoms automatically. Approach: We train machine learning (ML) mod ...
3D dose reconstruction for radiotherapy (RT) is the estimation of the 3D radiation dose distribution patients received during RT. Big dose reconstruction data is needed to accurately model the relationship between the dose and onset of adverse effects, to ultimately gain insig ...
Purpose: Bi-objective treatment planning for high-dose-rate prostate brachytherapy is a novel treatment planning method with two separate objectives that represent target coverage and organ-at-risk sparing. In this study, we investigated the feasibility and plan quality of thi ...
We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state-of-the-art GA, and, for th ...
Purpose: To investigate the variation in computed dose-volume (DV) indices for high-dose-rate (HDR) prostate brachytherapy that can result from typical differences in computation settings in treatment planning systems (TPSs). Methods: Five factors were taken into account: numb ...
In retrospective radiation treatment (RT) dosimetry, a surrogate anatomy is often used for patients without 3D CT. To gain insight in what the crucial aspects in a surrogate anatomy are to enable accurate dose reconstru ...
Semantic Backpropagation (SB) is a recent technique that promotes effective variation in tree-based genetic programming. The basic idea of SB is to provide information on what output is desirable for a specified tree node, by propagating the desired root-node output back to th ...
Purpose: The purpose of this study is to improve upon a recently introduced bi-objective treatment planning method for prostate high-dose-rate (HDR) brachytherapy (BT), both in terms of resulting plan quality and runtime requirements, to the extent that its execution time is c ...