SV
Sarah J. Vogt
6 records found
1
In this study non-invasive low field magnetic resonance imaging (MRI) technology was used to monitor fouling induced changes in fiber-by-fiber hydrodynamics inside a multi-fiber hollow fiber membrane module containing 401 fibers. Using structural and velocity images the fouling e
...
Early fouling warning is important for the economical operation of membrane separation systems. In parallel multi-channel flow systems, flow re-distribution between channels due to fouling is often associated with maloperation. In the current research we use low magnetic field NM
...
A novel magnetic resonance measurement (MRM) protocol for non-invasive monitoring of fouling in spiral wound reverse osmosis (SWRO) membrane modules is demonstrated. Sodium alginate was used to progressively foul a commercial SWRO membrane at industrially relevant operating condi
...
Magnetic Resonance Imaging (MRI) velocimetry was applied to study non-invasively the water flow field inside a spiral-wound desalination membrane module (diameter: 2.5 in.; length: 18.5 in.), located in a pressure vessel, at typical practice operational conditions as a function o
...
Forward osmosis (FO) and reverse osmosis (RO) membrane processes differ in their driving forces: osmotic pressure versus hydraulic pressure. Concentration polarization (CP) can adversely affect both performance and lifetime in such membrane systems. In order to mitigate against C
...
Fouling of spiral-wound reverse osmosis (SWRO) membrane systems is a pervasive problem. Here we demonstrate that a mobile, low cost magnetic resonance imaging (MRI) apparatus operating at the earth’s magnetic field (low magnetic field, LF) can non-invasively (i) image the inside
...