CH
C. Hong
info
Please Note
<p>This page displays the records of the person named above and is not linked to a unique person identifier. This record may need to be merged to a profile.</p>
5 records found
1
Model extraction attacks are attacks which generate a substitute model of a targeted victim neural network. It is possible to perform these attacks without a preexisting dataset, but doing so requires a very high number of queries to be sent to the victim model. This is otfen in
...
A machine learning classifier can be tricked us- ing adversarial attacks, attacks that alter images slightly to make the target model misclassify the image. To create adversarial attacks on black-box classifiers, a substitute model can be created us- ing model stealing. The resea
...
Adversarial training and its variants have become the standard defense against adversarial attacks - perturbed inputs designed to fool the model. Boosting techniques such as Adaboost have been successful for binary classification problems, however, there is limited research in th
...
Black-box Adversarial Attacks using Substitute models
Effects of Data Distributions on Sample Transferability
Machine Learning (ML) models are vulnerable to adversarial samples — human imperceptible changes to regular input to elicit wrong output on a given model. Plenty of adversarial attacks assume an attacker has access to the underlying model or access to the data used to train the m
...
In recent years, there has been a great deal of studies about the optimisation of generating adversarial examples for Deep Neural Networks (DNNs) in a black-box environment. The use of gradient-based techniques to get the adversarial images in a minimal amount of input-output cor
...