AA

A. Agiollo

info

Please Note

5 records found

Neuro-Symbolic (NeSy) models combine the generalization ability of neural networks with the interpretability of symbolic reasoning. While the vulnerability of neural networks to backdoor data poisoning attacks is well-documented, their implications for NeSy models remain underexp ...

Towards Benchmarking the Robustness of Neuro-Symbolic Learning against Data Poisoning Backdoor Attacks

Evaluating the Robustness of Logic Tensor Networks under BadNet attacks

Neural Networks have become standard solutions in many real-life relevant applications, such as healthcare. Yet, their vulnerability to backdoor attacks is a concern. These attacks modify a small portion of the data or the model to insert hidden triggered behaviors. Neuro-symbo ...
Backdoor attacks targeting Neural Networks face little to no resistance in achieving misclassifications thanks to an injected trigger. Neuro-symbolic architectures combine such networks with symbolic components to introduce semantic knowledge into purely connectionist designs. Th ...
The growing reliance on Artificial Intelligence (AI) systems increases the need for their understandability and explainability. As a reaction, Neuro-Symbolic (NeSy) models have been introduced to separate neural classification from symbolic logic. Traditional deep learning models ...
Neuro-Symbolic (NeSy) models promise better interpretability and robustness than conventional neural networks, yet their resilience to data poisoning backdoors is largely untested. This work investigates that gap by attacking a Logic Tensor Network (LTN) with clean-label triggers ...