Feasibility of reservoir monitoring in the Groningen gas field using ghost reflections from seismic interferometry

Journal Article (2024)
Authors

Faezeh Shirmohammadi (TU Delft - Applied Geophysics and Petrophysics)

D.S. Draganov (TU Delft - Applied Geophysics and Petrophysics)

A.V. Veltmeijer (TU Delft - Applied Geophysics and Petrophysics)

M. Naderloo (TU Delft - Reservoir Engineering)

A Barnhoorn (TU Delft - Applied Geophysics and Petrophysics)

Research Group
Applied Geophysics and Petrophysics
To reference this document use:
https://doi.org/10.1093/gji/ggae099
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Applied Geophysics and Petrophysics
Issue number
2
Volume number
237
Pages (from-to)
1018-1029
DOI:
https://doi.org/10.1093/gji/ggae099
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Seismic interferometry (SI) retrieves new seismic responses, for example reflections, between either receivers or sources. When SI is applied to a reflection survey with active sources and receivers at the surface, non-physical (ghost) reflections are retrieved as well. Ghost reflections, retrieved from the correlation of two primary reflections or multiples from two different depth levels, are only sensitive to the properties in the layer that cause them to appear in the result of SI, such as velocity, density and thickness. We aim to use these ghost reflections for monitoring subsurface changes, to address challenges associated with detecting and isolating changes within the target layer in monitoring. We focus on the feasibility of monitoring pore-pressure changes in the Groningen gas field in the Netherlands using ghost reflections. To achieve this, we utilize numerical modelling to simulate scalar reflection data, deploying sources and receivers at the surface. To build up subsurface models for monitoring purposes, we perform an ultrasonic transmission laboratory experiment to measure S-wave velocities at different pore pressures. Applying SI by autocorrelation to the modelled data sets, we retrieve zero-offset ghost reflections. Using a correlation operator, we determine time differences between a baseline survey and monitoring surveys. To enhance the ability to detect small changes, we propose subsampling the ghost reflections before the correlation operator and using only virtual sources with a complete illumination of receivers. We demonstrate that the retrieved time differences between the ghost reflections exhibit variations corresponding to velocity changes inside the reservoir. This highlights the potential of ghost reflections as valuable indicators for monitoring even small changes. We also investigate the effect of the sources and receivers’ geometry and spacing and the number of virtual sources and receivers in retrieving ghost reflections with high interpretability resolution.