Solubilities of CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and SO<sub>2</sub> in ionic liquids and Selexol from Monte Carlo simulations

More Info
expand_more

Abstract

Monte Carlo simulations are used to calculate the solubility of natural gas components in ionic liquids (ILs) and Selexol, which is a mixture of poly(ethylene glycol) dimethyl ethers. The solubility of the pure gases carbon dioxide (CO2), methane (CH4), ethane (C2H6), and sulfur dioxide (SO2) in the ILs 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][Tf2N], n = 4, 6), 1-ethyl-3-methylimidazolium diethylphosphate ([emim][dep]), and Selexol (CH3O[CH2CH2O]nCH3, n = 4, 6) have been computed at 313.15 K and several pressures. The gas solubility trend observed in the experiments and simulations is: SO2 > CO2 > C2H6 > CH4. Overall, the Monte Carlo simulation results are in quantitative agreement with existing experimental data. Molecular simulation is an excellent tool to predict gas solubilities in solvents and may be used as a screening tool to navigate through the large number of theoretically possible ILs.

Files

Paper.pdf
(.pdf | 3.41 Mb)