On Sensitive Minima in Margin-Based Deep Distance Learning
R. Serajeh (K.N. Toosi University of Technology)
S Khademi (TU Delft - Pattern Recognition and Bioinformatics)
Amir Mousavinia (K.N. Toosi University of Technology)
J.C. Van Gemert (TU Delft - Pattern Recognition and Bioinformatics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper investigates sensitive minima in popular deep distance learning techniques such as Siamese and Triplet networks. We demonstrate that standard formulations may find solutions that are sensitive to small changes and thus do not generalize well. To alleviate sensitive minima we propose a new approach to regularize margin-based deep distance learning by introducing stochasticity in the loss that encourages robust solutions. Our experimental results on HPatches show promise compared to common regularization techniques including weight decay and dropout, especially for small sample sizes.