Smart Redundancy Schemes for ANNs against Fault Attacks
Troya Çağıl Köylü (TU Delft - Computer Engineering)
S Hamdioui (TU Delft - Quantum & Computer Engineering)
M. Taouil (TU Delft - Computer Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Artificial neural networks (ANNs) are used to accomplish a variety of tasks, including safety critical ones. Hence, it is important to protect them against faults that can influence decisions during operation. In this paper, we propose smart and low-cost redundancy schemes that protect the most vulnerable ANN parts against fault attacks. Experimental results show that the two proposed smart schemes perform similarly to dual modular redundancy (DMR) at a much lower cost, generally improve on the state of the art, and reach protection levels in the range of 93% to 99%.