A ±25A Versatile Shunt-Based Current Sensor with 10kHz Bandwidth and ±0.25% Gain Error from -40°C to 85°C Using 2-Current Calibration
Zhong Tang (TU Delft - Electronic Instrumentation)
Roger Zamparette (TU Delft - Electronic Instrumentation)
Yoshikazu Furuta (MIRISE Technologies)
Tomohiro Nezuka (MIRISE Technologies)
K. A.A. Makinwa (TU Delft - Microelectronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Accurate current sensing is critical in many industrial applications, such as battery management and motor control. Precise shunt-based current sensors have been reported with gain errors of less than 1% over the industrial temperature range (-40°C to 85°C) [1]–[4]. However, since they are intended for coulomb counting, their bandwidth is limited to a few tens of Hz, making them unsuitable for battery impedance or motor-current sensing. This paper presents a current sensor with a wide (10kHz) bandwidth and a tunable temperature compensation scheme (TCS), which allows it to be flexibly used with different types of shunts while maintaining high accuracy. A low-cost room-temperature calibration scheme is proposed to optimize gain flatness over temperature by exploiting the shunt's self-heating at large currents. Over the industrial temperature range and a ±25A current range, it achieves state-of-the-art gain error (±0.25%) with both low-cost PCB and stable metal-alloy shunts.