Modelling of microstructure of asr influenced cement-based materials
More Info
expand_more
Abstract
ASR (alkali-silica reaction) is one of the toughest durability problems in engineering. However, the damage induced by ASR is still fairly unpredictable due to the lack of microstructural information of cement-based materials affected by ASR, while the microstructure determines the global performance. In order to fill this gap, a multiscale simulation model of ASR is under development. The basic theory and assumptions about this multiscale model can be found in [8]. This paper illustrates how the microstructure evolution of cement-based materials induced by ASR is achieved by this model. In the model, the entire chemical process including dissolution of reactive aggregate, nucleation and growth of ASR products (alkali silicate complex, calcium alkali silicate complex), is quantitatively simulated based on the kinetic and thermodynamic parameters. Furthermore, the 3D heterogeneous aggregate is numerically simulated using stereology based on the data from 2D thin-section. As a result, the dissolution degree of aggregate, the amount and location of ASR products and the porosity change can be traced. These micro parameters can be used for the simulation of crack formation in mesoscale. Similarly, the macroscale damage can be predicted based on the simulation results from mesoscale.