Authored

9 records found

ASR

Insights into the cracking process via lattice fracture simulation at mesoscale based on the chemical reactions at microscale

In our former paper, based on a published 3D reactive transport model at microscale with the capability of simulating the chemical reactions involved in ASR, the location of expansive ASR gel related to the reactivity of aggregate, temperature, aggregate porosity and silica conte ...
Portland cement is the most produced material in the world. The hydration process of cement consists of a group of complex chemical reactions. In order to investigate the mechanism of cement hydration, it is vital to study the hydration of each phase separately. An integrated mod ...
A 3D reactive transport model at microscale is proposed for simulating the chemical reaction process of alkali silica reaction (ASR) thermodynamically and kinetically including the dissolution of reactive silica, the nucleation and growth of ASR products and the dissolution of ca ...
The microstructure of alkali-reactive aggregates, especially the spatial distribution of the pore and reactive silica phase, plays a significant role in the process of the alkali silica reaction (ASR) in concrete, as it determines not only the reaction front of ASR but also the l ...
Prediction of alkali silica reaction is still difficult due to the lack of a comprehensive understanding of its chemical fundamentals. In-site experimentally revealing the fundamentals is not realistic as ASR shows over several years or even decades and is affected by many factor ...
Municipal solid waste incineration (MSWI) bottom ash, due to its high mineral content, presents great potential as supplementary cementitious material (SCM). Weathering, also known as aging, is a treatment process commonly employed in waste management to minimize the risk of heav ...
Cracking is inevitable during the service period of concrete structures. They are preferential ingression channels for aggressive ions. It is difficult or even impossible to repair all the cracks due to the limitation of practical conditions. However, cracks have potentials to se ...
Microcracks play vital roles in the prediction of the service life of concrete structure. Because microcracks in concrete structure are the preferential ingression channels for aggressive ions, e.g., chloride, sulphate, etc. However, microcracks have potentials to self-heal autog ...
ASR (alkali-silica reaction) is one of the toughest durability problems in engineering. However, the damage induced by ASR is still fairly unpredictable due to the lack of microstructural information of cement-based materials affected by ASR, while the microstructure determines t ...