High Current Density Electrical Breakdown of TiS3 Nanoribbon-Based Field-Effect Transistors
Aday J. Molina-Mendoza (Universidad Autónoma de Madrid)
Joshua O. Island (Kavli institute of nanoscience Delft, TU Delft - QN/van der Zant Lab)
Wendel S. Paz (Universidad Autónoma de Madrid)
Jose Manuel Clamagirand (Universidad Autónoma de Madrid)
Jose R. Ares (Universidad Autónoma de Madrid)
Eduardo Flores (Universidad Autónoma de Madrid)
Fabrice Leardini (Universidad Autónoma de Madrid)
Carlos Sanchez (Instituto de Ciencia de Materiales de Madrid (ICMM), Universidad Autónoma de Madrid)
Nicolas Agrait (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Universidad Autónoma de Madrid)
Gabino Rubio-Bollinger (Universidad Autónoma de Madrid)
Herre S J van der Zant (Kavli institute of nanoscience Delft, TU Delft - QN/van der Zant Lab)
Isabel J. Ferrer (Instituto de Ciencia de Materiales de Madrid (ICMM), Universidad Autónoma de Madrid)
JJ Palacios (Universidad Autónoma de Madrid)
Andres Castellanos-Gomez (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The high field transport characteristics of nanostructured transistors based on layered materials are not only important from a device physics perspective but also for possible applications in next generation electronics. With the growing promise of layered materials as replacements to conventional silicon technology, the high current density properties of the layered material titanium trisulfide (TiS3) are studied here. The high breakdown current densities of up to 1.7 × 106 A cm−2 are observed in TiS3 nanoribbon-based field-effect transistors, which are among the highest found in semiconducting nanomaterials. Investigating the mechanisms responsible for current breakdown, a thermogravimetric analysis of bulk TiS3 is performed and the results with density functional theory and kinetic Monte Carlo calculations are compared. In conclusion, the oxidation of TiS3 and subsequent desorption of sulfur atoms play an important role in the electrical breakdown of the material in ambient conditions. The results show that TiS3 is an attractive material for high power applications and lend insight into the thermal and defect activated mechanisms responsible for electrical breakdown in nanostructured devices.