Shear transfer mechanism in reinforced engineered cementitious composite (ECC) beams: Quantification of Vs and Vc

Journal Article (2022)
Author(s)

D. Gu (TU Delft - Concrete Structures, Southeast University)

Jinlong Pan (Southeast University)

S. Mustafa (TU Delft - Concrete Structures)

Y. Huang (TU Delft - Concrete Structures)

M. Lukovic (TU Delft - Concrete Structures)

Research Group
Concrete Structures
Copyright
© 2022 D. Gu, Jinlong Pan, S. Mustafa, Y. Huang, M. Lukovic
DOI related publication
https://doi.org/10.1016/j.engstruct.2022.114282
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 D. Gu, Jinlong Pan, S. Mustafa, Y. Huang, M. Lukovic
Research Group
Concrete Structures
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Volume number
261
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

To enhance the structural and seismic resistance, as well as durability of concrete structures, an ultra ductile fiber reinforced cementitious composites called Engineered Cementitious Composite (ECC), also known as Strain Hardening Cementitious Composite (SHCC), was developed. ECC has a similar compressive and tensile strength to conventional concrete, but it exhibits a pseudo-strain-hardening behaviour under uniaxial tension with excellent crack control ability. The ultimate tensile strain of ECC can reach 3–12%, which is 300–1200 times higher than that of concrete. It is reported that ECC can also exhibit at least twice as high shear carrying capacity compared to traditional concrete, signifying a potential to use ECC material in shear-resistance elements. However, the shear resisting mechanism of reinforced ECC (R/ECC) members is still not clear. In most existing codes and models, the shear strength of reinforced structural members (Vu) is divided into two parts, i.e., shear resistance coming from the matrix (Vc) and from the transverse reinforcement (Vs). To quantify accurately Vc and Vs and also their development throughout the loading, a well-designed testing method consisting of continuous strain quantification along the stirrups, was used in this research. Six steel reinforced beams incorporating different matrix (ECC, concrete and mortar) were tested under four-point bending. The test results indicated that Vc changed continuously with the propagation of shear crack, whereas the stirrups that crossed the critical shear crack, did not always yield at the ultimate shear resistance.

Files

1_s2.0_S0141029622004072_main_... (pdf)
(pdf | 21.6 Mb)
- Embargo expired in 31-10-2022
License info not available