Property-activity relations of multifunctional reactive ensembles in cation-exchanged zeolites

a case study of methane activation on Zn2+-modified zeolite BEA

Journal Article (2022)
Author(s)

A.A. Kolganov (Russian Academy of Sciences)

Anton A. Gabrienko (Russian Academy of Sciences)

I. Chernyshov (ITMO University)

Alexander G. Stepanov (Russian Academy of Sciences)

Evgeny A. Pidko (University of Tyumen, Tyumen, TU Delft - ChemE/Inorganic Systems Engineering)

Research Group
ChemE/Inorganic Systems Engineering
Copyright
© 2022 A.A. Kolganov, Anton A. Gabrienko, I. Chernyshov, Alexander G. Stepanov, E.A. Pidko
DOI related publication
https://doi.org/10.1039/d1cp05854a
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 A.A. Kolganov, Anton A. Gabrienko, I. Chernyshov, Alexander G. Stepanov, E.A. Pidko
Research Group
ChemE/Inorganic Systems Engineering
Issue number
11
Volume number
24
Pages (from-to)
6492-6504
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The reactivity theories and characterization studies for metal-containing zeolites are often focused on probing the metal sites. We present a detailed computational study of the reactivity of Zn-modified BEA zeolite towards C-H bond activation of the methane molecule as a model system that highlights the importance of representing the active site as the whole reactive ensemble integrating the extra-framework ZnEF2+ cations, framework oxygens (OF2−), and the confined space of the zeolite pores. We demonstrate that for our model system the relationship between the Lewis acidity, defined by the probe molecule adsorption energy, and the activation energy for methane C-H bond cleavage performs with a determination coefficient R2 = 0.55. This suggests that the acid properties of the localized extra-framework cations can be used only for a rough assessment of the reactivity of the cations in the metal-containing zeolites. In turn, studying the relationship between the activation energy and pyrrole adsorption energy revealed a correlation, with R2 = 0.80. This observation was accounted for by the similarity between the local geometries of the pyrrole adsorption complexes and the transition states for methane C-H bond cleavage. The inclusion of a simple descriptor for zeolite local confinement allows transferability of the obtained property-activity relations to other zeolite topologies. Our results demonstrate that the representation of the metal cationic species as a synergistically cooperating active site ensembles allows reliable detection of the relationship between the acid properties and reactivity of the metal cation in zeolite materials.