Non-intrusive subdomain POD-TPWL for reservoir history matching

More Info
expand_more

Abstract

This paper presents a non-intrusive subdomain POD-TPWL (SD POD-TPWL) for reservoir history matching through integrating domain decomposition (DD), proper orthogonal decomposition (POD), radial basis function (RBF) interpolation, and the trajectory piecewise linearization (TPWL). It is an efficient approach for model reduction and linearization of general non-linear time-dependent dynamical systems without accessing to the legacy source code. In the subdomain POD-TPWL algorithm, firstly, a sequence of snapshots over the entire computational domain is saved and then partitioned into subdomains. From the local sequence of snapshots over each subdomain, a number of local basis vectors is formed using POD, and then the RBF interpolation is used to estimate the derivative matrices for each subdomain. Finally, those derivative matrices are substituted into a POD-TPWL algorithm to form a reduced-order linear model in each subdomain. This reduced-order linear model makes the implementation of the adjoint easy and results in an efficient adjoint-based parameter estimation procedure. Comparisons with the classic finite-difference-based history matching show that our proposed subdomain POD-TPWL approach is obtaining comparable results. The number of full-order model simulations required is roughly 2–3 times the number of uncertain parameters. Using different background parameter realizations, our approach efficiently generates an ensemble of calibrated models without additional full-order model simulations.