Human‑centric computational urban design
Optimizing high‑density urban areas to enhance human subjective well‑being
Joppe van Veghel (Eindhoven University of Technology)
Gamze Dane (Eindhoven University of Technology)
G. Agugiaro (TU Delft - Urban Data Science)
Aloys Borgers (Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Urban areas face increasing pressure due to densification, presenting numerous challenges involving various stakeholders. The impact of densification on human well-being in existing urban areas can be both positive and negative, which requires a comprehensive understanding of its consequences. Computational Urban Design (CUD) emerges as a valuable tool in this context, offering rapid generation and evaluation of design solutions, although it currently lacks consideration for human perception in urban areas. This research addresses the challenge of incorporating human perception into computational urban design in the context of urban densification, and therefore demonstrates a complete process. Using Place Pulse 2.0 data and multinomial logit models, the study first quantifies the relationship between volumetric built elements and human perception (beauty, liveliness, and safety). The findings are then integrated into a Grasshopper-based CUD tool, enabling the optimization of parametric designs based on human perception criteria. The results show the potential of this approach. Finally, future research and development ideas are suggested based on the experiences and insights derived from this study.