Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment

More Info
expand_more

Abstract

Lattice distortions constitute one of the main features characterizing high entropy alloys. Local lattice distortions have, however, only rarely been investigated in these multi-component alloys. We, therefore, employ a combined theoretical electronic structure and experimental approach to study the atomistic distortions in the FeCoNiCrMn high entropy (Cantor) alloy by means of density-functional theory and extended X-ray absorption fine structure spectroscopy. Particular attention is paid to element-resolved distortions for each constituent. The individual mean distortions are small on average, <1%, but their fluctuations (i.e., standard deviations) are an order of magnitude larger, in particular for Cr and Mn. Good agreement between theory and experiment is found.