Probabilistic Game-Theoretic Traffic Routing
Emilio Benenati (TU Delft - Team Sergio Grammatico)
Sergio Grammatico (TU Delft - Team Sergio Grammatico)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We examine the routing problem for self-interested vehicles using stochastic decision strategies. By approximating the road latency functions and a non-linear variable transformation, we frame the problem as an aggregative game. We characterize the approximation error and we derive a new monotonicity condition for a broad category of games that encompasses the problem under consideration. Next, we propose a semi-decentralized algorithm to calculate the routing as a variational generalized Nash equilibrium and demonstrate the solution's benefits with numerical simulations. In the particular case of potential games, which emerges for linear latency functions, we explore a receding-horizon formulation of the routing problem, showing asymptotic convergence to destinations and analysing closed-loop performance dependence on horizon length through numerical simulations.