Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage
Ilman Sulaeman (Student TU Delft)
Gautham Chandra Mouli (TU Delft - DC systems, Energy conversion & Storage)
Aditya Shekhar (TU Delft - DC systems, Energy conversion & Storage)
Pavol Bauer (TU Delft - DC systems, Energy conversion & Storage)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Future office buildings are expected to be integrated with energy intensive, inherently DC components such as photovoltaic panels (PV), electric vehicles (EV), LED lighting, and battery storage. This paper conceptualizes the interconnection of these components through a 750 V DC nanogrid as against a conventional three-phase 400 V AC system. The factors influencing the performance of a DC-based nanogrid are identified and a comparative analysis with respect to a conventional AC nanogrid is presented in terms of efficiency, stability, and protection. It is proved how the minimization of grid energy exchange through power management is a vital system design choice. Secondly, the trade-off between stability, protection, and cost for sizing of the DC buffer capacitors is explored. The transient system response to different fault conditions for both AC and DC nanogrid is investigated. Finally the differences between the two systems in terms of various safety aspects are highlighted.